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Abstract

This thesis discusses the use of the multiresolution representation and Radial Basis
Function (RBF) neural networks to segment both FUR and SAR imagery. The multires-
olution approximation coefficients are used as features into the RBF network which learns

to distinguish between different cultural and natural regions or objects. The wavelets used
are Mallat's spline wavelet and Daubechies' compactly supported wavelets. Additionally,

this thesis provides an explanation of wavelets in a tutorial manner. It introduces wavelet
theory and discusses two different approaches to generating the multiresolution or wavelet

representation. '•
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IMAGE SEGMENTATION

USING

AFFINE WAVELETS

L Introduction.

1.1 Introduction

Application of the wavelet transform in the pattern recognition process has shown

promising results, in particular, the wavelet's use in processing images. This work pursues

the development of a system to robustly segment Synthetic Aperture Radar (SAR) images

and Forward Looking Infrared (FLIR) images using orthonormal wavelets.

1.2 Statement of Problem

A system which can robustly segment SAR and FLIR imagery does not yet exist. This

work explores the ability of a rnultiresolution r'epresentation to segment natural and cultural

features in SAR and FLIR images. The wavelet transform will be the primary mathematical

basis for the decomposition of images, while the Multiresolution Decomposition will be the

main analytical tool.

1.3 Background

"In 1830 about 300 technical and scientific journals were in circulation. Today there

are over 60,000 journals and 2.5 million articles per year throughout the world in over

50 languages."[35:2] A growing pr,•blem each passing year is our inability to manage the

abundance of information we produce. One approach to this problem is the automation of

data. processing systems with the ability to accomplish pattern recogi. ition.

There are many systems in existence today which can identify or classify, with a high

degree of accuracy, individual non-connected elements. One such system can recognize indi-

vidually printed numbers, another system can recognize non-connected words (vords spoken

1-1



one at a time with an accentuated pause between each word). Although these results are

impressive, in practice most pattern recognition tasks require the recognition of -an element
which is cornected to other elements. One of the unsolved problems in pattern recognition

is how to isolate or segment the elements of interest from other elements of interest or from

the rest of the "background" clutter. A reliable segmentation system in conjunction with an

existing classification system could be employed in many applications. Such a system in the

US Postal Service would be able to process nearly all hand-written addresses automatically,

without resorting to a human operator. Unfortunately no such system is yet fully capable

of this segmentation task and much of our mail today is still processed by a human operator

as far as segmenting the individual letters and numbers of the addresses on the envelope is

concerned.

The United States Air Force is today pursuing research in the area of image processing

with the goal of reliably detecting, recognizing, and classifying targets. The fundamental

problem with target detection is segmentation or finding possible targets in highly cluttered

images[2:2].

The concept of separating one object from another is as common to humans
as breathing. We constantly manipulate our environment to suit our needs,
whether we physically change the environment (actually move or remove objects
within our environment) or simply change the way we perceive or observe the
environment.

Often, we cannot physically aiter the environment in which a target resides,
short of dedtroying the target and its surroundings. Therefore, we attempt to
observe the target in its surroundings. We must separate the target from the
rest of the image to observe or detect the target. Distinguishing targets from
background is referred to as segmentation.[2:2J

This thesis will justify further application of wavelets in the process of segmenting

images, specifically segmenting between natural items such as trees, fields, and shadows, in

SAR imagery as well as man made objects in FLIR imagery.

1.4 Scope

This research will show that cluttered imagery can be segmented using, elements of

a. multire'rolution representation. This multiresolution representation is produced with re-

Ej)ect to tilations and tranuslations of a mother wavelet as is the case when using an afhinic

1-2



wavelet transform. The resulting coefficients are then processed using standard thresholding

techniques and neural network techniques to accomplish the segmentation.

This research will not define the theoretical limits on the use of the wavelet nor will it
atterrpt to show the use of all possible combinations of "mother wavelets". This study uses

a very small subset of possible "mother wavelets" and demonstrates their usefulness in the

segmentation of images.

1.5 Summary of Current Knowledge

1.5. 1 Pattern Recognition and Segmentation Pattern recognition of images is, in gen-
eral, composed of three steps. First, images are segmented into regions of interest. Second,

features are extracted from these regions of interest. These features might include ,such

things as length to width ratios of the regions or perhaps the average pixel value of - region.
The third and final step i:. to classify these regions of interest into some predetermined cate-

gories. These categories coild be tanks, trucks, background clutter or sonic other appropriate

category depending on the types of images being used.

Segment.ation is the process of subdividing an image into its constituent parts or ob-
jects. Segmentation is one of the most important steps in automated image analysis. It is

at this step that objects or other entities of interest are extracaed from an image for further

processing such as description and recognition 15:331].

Algorithms for segmentation are generally based on one of two basic properties of gray
values: discontinuity and similarity. Discontinuity algorithms partition an image based on

abrupt changes in gray scale. The approach of similarity algorithms is aimed at thresholding,
_10 60,31 UL%,VUV11t UlI [ai L Iefii w b 4 iT1 k1111es'lCy 01

luO Izrn irig, l XOu, an n1 s _- _w ., f- , r F iliba'

algorithms for image segmentation. Albert L'Ilomme used Gabor coefficients [20] and Joseph

Brickey used fractal dimension to [3] segment high resolution SAIlR imagery in their thesis
research. This thesis demonstrates that segmentation of both SAR and FLIR imagery canr

be accomplished using the affine wavelet coefficients.

1.6 General Approach

The proposed system is composed of three stages of processing. The first stage gen-

erates a nmultiresolution representation of a SAlt image. The second stage extracts features

from a. particular level of the multiresolution representation. The third stage used a radial

1-3



basis function artificial neural network, which accomplishes the segmentation based on the

multiresolution features.

1.7 Objectives

The specific objectives of this research are to answer the following questions:

"* How is the Wavelet transform related to other types of signal or image analysis tools?

"* How is the Multiresolution Representation obtained or caiculated for a signal or image?

"• Do the multiresolution coefficients provide values which can be used to separate natural

and man-made regions within both SAR and FLIR imagery?

"• Which set of coefficients should be used as the features?

"* Can the Radial Basis Function (RBF) artificial neural network be trained to au-

tonomously segment SAR and FLIR imagery using the wavelet coefficients as features?

" Will the RBF neural network segmentation using the multiresolution coefficients gen-

eralize to all areas of an image? If so, will it also generalize to additional images not

used in network training?

1.8 Materials and Equipment

The image processing equipment consists of SPARC stations which currently reside at

the Model Based Vision (MBV) La.boi'atory and the those at AFIT on Wright Patterson

AFB. The SAR and FLIR imagery is supplied by the same lab. The numerical analysis

support is provided by a member of the AFIT Department of Mathematics and Statistics.

1.9 Sequence of Presentation

Chapter 1 is a general introduction to the problem and an approach to its solution.

Chapter 2 provides a review of literature which is relevant to segmentation, wavelets, and

radial basis function artificial neural networks. Chapter 3 is a tutorial on the Wavelet

transform and the multiresolution representation. Chapter 4 explains the algorithm used

to generate the multiresolution approximations and contains some pictorial examples of the

multi esolution approximations of various images. Note that Chapters 3 and 4 were jointly

written with Capt John (Stewart) Laing [19] and it is highly recommended that the reader

become very familiar with chapters 3 and 4 before proceeding on to chapter 5. This provides

14



a common vocabulary wh'ch makes Chapter 5 on experimental application and results more

understandable. Chapter 6 contains conclusions regarding this research and recommrendation

for further research in thi3 area.
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I. Literature Review

2.1 Introduction

This literature review is undertaken to show that the wavelet transform is an excellent

ongoing area of research as it relates to the pattern recognition process and, in particular,

to image segmentation. Additionally, it demonstrates the utility of radial basis function

artificial neural networks in the area of pattern recognition.

2.2 Scope of Review

This review covers a small subset of the availab~e literature. It provides simple justifi-

cation for research on the wavelet transform as a means of segmenting images.

2.3 Background

Pattern recogui.iwon is in general composed of three steps. First, images are segmented

into regions of interest. Second, features are extracted from these regions of interest (these

features might include such things as length to width ratios of the regions or perhaps the

average pixel value of a region.). The final step is classification of the regions of interest into

some predetermined categories. These categories could be tanks, trucks, background clutter

or some other appropriate category dep mnding on the types of images being used.

The inherent difficulty of these three tasks has caused many researchers to look to the
h;nlAgica. vis•ual sy.stem a-s a modell This ;is riu to the fac-t that ;n tr.n•yal h;nlrw;r21 ind,,!

systems (human, cat, dog, spider, etc) are vastly superior to any constructed by man, thus

far. The study of mammalian visual systems has provided insight into the decomposition

and processing of visual stimuli. A great deal of recent research has been conducted to

artificially mimic the biologically based decomposition and processing.

One numerical method which can he employed in the pattern recognition process which

may show some promise is based on the discrete wavelct transform. The discrete wavelet

transform is a represeatation of an arbitrary function having finite energy as the superposition

of a set of functions known as wavelets[l:2297].
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2.4 Alethod of treatment end organization

This liter.tture review is organized into three specific areas of research as they relate
to pattern recognition and image processing ;n general. The first area is biological research,

which has been used as the basis for some image processing appr3aches. This includes the use

of Gabor functions, as they have been used in image coding and pattern classificatioi The

second area deals with the wavelet transform and its usage, thus far, in pattern recognition.

The final area will cover the use of artificial neural networks in pattern classification and, in

particular, the use of radial basis functions.

2.5 Neurophysiological Research

2.5.1 Theories on Building Perception David Hubel has shown that the visual cortex

is functionally subdivided into columns of neurons which respond to similar input. He has

also shown that different neurons in the visual cortex respond to different types of input

stimulus [17].

David Hubel's exploration of the " transformation of the retinal image into a percep-

tion" [17:54] was carried out on the brains of adult cats. The cats were anesthetized and

faced toward a wide screen 1.5 meters away. On the screen various patterns of white light

were projected. As a pattern of light appeared a microelectrode was inserted into a portion

of the cat's visual system. This provided a method of recording the response of individual

neurons to a particular light pattern. The correlation or comparison of the light patterns

and the neuronal output gave rise to the following generalizations about the mammalian

visual system.

* Orientation is an important factor to neuronal response. Some of the neurons re-
sponded only to lines at certain angles as the cat faced the screen. Additionally, a

large number of neurons ir, the Lateral Geniculate responded to differences in illumi-

nation intensity rather than the amount of total intensity. The cortical neurons showed
vigorous response to slow downward movements and a lesser response to upward moNe-

ments. They showed no response to side-to-side motion [17:2].

* A large ,,umber of cortical neurons are considered "simple" and respond depending on

the orientation and position of the shape with regard to the cells receptive field. "Com-

plex" cells also responded strongly to edges and bars and their associated orientation

but they were not. as discriminating as to the exact position of the stimulus.[17:59,60]
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These results suggest that mammalian visual perception is built from small pieces of

the whole[17].

2.5.2 The Gabor Function Approximates the 2D Visual Receptive Field Responses

Once research of visual perception had shown evidence of this parts-to-whole relationship,

other researchers attempted to quantify some of the intermediate representations. The work

of Jones and Palmer showed one form of the processing that is done on 2-dimensional(2D)

images in the mammalian visual system. A graphical representation of this processing is very

similar to the graph of a set of mathematical functions known as Gabor functions [18:1180].

Fourteen adult cats were anesthetized and shown various visual stimulus by way of an

oscilloscope screen. The cats were shown an illuminated dot on a dark screen and a dark

dot on an illuminated screen for various intervals of time. Simultaneously microelectrodes

were recording the neuronal responses from the visual cortex. These sets of data were later

compared using a process called "reverse correlation"[18:1180] and produced a 2D image

which compared with little error to the 2D Gabor functions.

2.6 Image Processing using The Gabor Transform

2.6.0.1 Finding Optimal Gabor Coefficients Using the Gabor functions as a

model of a portion of human visual processing, John Daugman showed that, because of

the intrinsic redundancy, 2D images can be coded using the 2D Gabor transform. He has

been able to code images into a more compact form and thus reduce the amount of data

to be transmitted for image reconstruction. Daugman has also shown the usefulness of

the Gabor transform for image analysis and image segmentation. The Gabor transform

"extracts locally windowed 2D spectral information concerning form and texture without

sacrificing information about 2D location or more global spatial relationships, as does a

Fourier transforn."[l 1]

The main thrust of Daugman's article [11] was to show the utility of a neural network

for obtaining the Gabor coefficients to represent an image with a set of Gabor functions. Since

the 2D discrete Gabor transform is not an orthonormal set of functions, it is computationally

intensive to directly calculate the coefficients for an optimal approximation to an image.

Daugman's neural network approach is used to find an optimal set of coefficients which

produces an optimal match to the original image.
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2.6.0.2 FLIR Image Segmentation Using Gabor Coefficients During his thesis

research, Kevin Ayer segmented targets from non-targets in a Forward Looking Infrared

(FLIR) image using Gabor functions[2]. Ayer determined the Gabor transform of FLIR

images and obtained multiple sets of Gabor coefficients. Each set of coefficients represented

a particular orientation of interest. The Gabor coefficients constituted a correlation coeffi-

cient of a particular Gabor function as it relates to thc image of interest. From the Gabor

coefficients he was able to segment the image into regions of interest. He then used conven-

tional pattern recognition techniques to classify a specific region of interest using the Gabor

coefficients as his features.

2.6.1 SAR Image Segmentation Using Gabor Coefficients Albert L'Homme has con-

structed a system to segment SAR imagery using the Gabor transform[20]. Utilizing a small

subset of possible orientations and a constant modulation of Gabor functions he geiterated

a set of Cabor coefficients. He found that the bandwidth of the Gabor functions to be more

significant in segmentation than the orientation parameters. These coefficients were then

processed using a radial basis function self-organizing neural network to segment a SAR

image. He was able to segment with measures of accuracy up to 92% as compared to hand

segmented imagery.

2.6.2 Wavelets in image processing As described in the previous section, image cod-

ing, segmentatlion, and feature extraction have been done using Gabor functions. These

functions are a subset of a larger class of functions known as wavelets [22:2098]. According

to Mallat [22], [25], [1], the wavelet transform can provide a multiresolution representation

of an arbitrary function having finite energy. This representation allows for localization of

frequency content of an image, and provides a tool for texture and edge discrimination. Both

texture and edge detection can be an effective tool in pattern recognition.

Christopher Heil has contributed to understanding the mathematical definition of

wavelets. Heil explains that separable Hilbert Spaces, in particular L 2 (R), possess an or-

thonorinal basis. The major benifit of an orthonornmal basis is that it provides a decompo-

sition for a. Hilbert space such that if {e,, is an orthonormal basis for H then every x E5 H

can be written

This does not guarantee that the basis set can be found or that when found it will be

convenient, to work with[16:147].
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"Frames are an alternative to orthonormal basis sets. By giving up the requirements
of orthogonality and uniqueness of decomposition we allow much more freedom in our choice

of "basic vectors", while still retaining the ability to decompose the space." [16:1471 If {x,z}

is a frame, then every x E 1I can be written

X = E=Cnx

in such a way that scalars are computable, and the series converges to x.

Frames fall into two general categories called Weyl-Heisenberg(W-H) frames and affine

frames. The W-H frames are composed of discrete modulations and translations of a single
function, known as a "mother wavelet". The affine frames are composed of discrete dilations

and translations of the "mother wavelet" [16:147-159]. The Gabor transform mentioned

above falls into the W-H category and doesn't form an orthonormal basis set.

2.6.2.1 Orthonormal 14'aielets Daubechies has revealed the form of a set of

wavelets which are orthonormal [8]. These orthonormal sets can be used to exactly recon-
struct a function from its wavelet coefficients with the classical expansion method formula.

This provides a straightforward means of exact reconstruction of an image rather than an
optimal reconstruction. The wavelet coefficients should prove useful in some areas of pattern

recognition [22]. Daubechies has also provided orthonormal wavelets with a compact support

meaning the wavelet has nonzero values on a finite interval.

2.7 Artificial Neural Network Radial Basis Function Classifiers

tArtifiial neural uetwo'ks constitute one class of architecture for parallel distributed

processing systems. This architecture follows from what is currently known and hypothesized

about the mammalian nervous system. A large number of papers have been recently pub-

lished with respect to neural network techniques and tools which can be applied to pattern

recognition problems [33:28].

In Dan Zahirniak's thesis [37] on the characterization of radar signals, he explains the

concept.s and architecture of RU.13F neural networks. 'The citations following cach section are

the original literature sources used by Zahirniak.

Neural network classifiers are categorized as either a. Hyperplane Classifier, an Exem-
plar Classifier, a Probabilistic Classifier or a. Kernel Classifier. These categories are depen-

dent on the method used by the network to accomplish classification [21:47-63]. Ther most
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common neural network classifier is the multilayer perceptron. Using a single hidden layer

where each node uses a sigmoidal function to calculate its output from a sum of the product

of its inputs and their associated weights, the perceptron is a hyperplane classifier. This type

of classifier is based on the property that any multivariate function can be app'ox:rmated

with a finite superposition of sigmoidal functions.

The Radial Basis Function (RBF) departs from the traditional McCuilough and Pitts

neuron and falls into the Kernel Classifiers category. The Kernel Classifier is characterized

by:

* The overlapping radial basis functions create a complex receptive-field decision region

over the feature space as shown in Figure 2.!.

* The basic premise of the network is that any multivariate function can be reasonably

approximated using a linear combination of radial basis functions with their centers

on or near data points[29:143-1671 [28:978-980].

Additionally, the RBF network architecture consists of establishing a single hidden

layer, with nodes in the hidden layer transforming inputs to outputs using a radial basis

function [37].

2.7.1 Localized Receptive Fields The same type of neural network architecture dis-

cussed by Zahirniak in the previous subsection is explored by Moody and Darken in [26].

They mention that locally-tuned overlapping receptive fields (radial basis functions) are

known data structures in biological nervous systems. These same receptive field have plas-

- -X--f..l - f 1-jt(SitlIO tR. cell Y. t¶113e EIiiC v JsUO

cortex. The exact learning of the RBF network is described as a two stage hybrid process

where the lower layer field centers and field width is determined by a self-organizing manner

and the amplitudes of the node is determined by a supervised LMS rule. This provides for

faster learning since only the output weights are calculated using an error term. Moody and

Darken apply the receptive field network to predicting the Mackey-Glass differential delay

equation time series. Their results demonstrate that the receptive field network achieves

comparable prediction accuracy to a multilayer perceptron using a gradient descent learning

algorithm in significantly less time, on the order of 1000 times faster [26].

In [27] Nowlan describes the difference between hard and soft learning algorithms for

I11BF networks.

2-6



/ Class A

Receptive Exemplars

Fields _ __

* XXX

XX

XX

X X

A * X

II
Exemp2lars
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* The Hard learning algorithm requires updating weights on a wiriner take all criteria.

Only the winning node is updated and all other node are unaffected.

4* The Soft learning algorithm requires updating weights based on their proportionality

to the present vector's input strength. All of the nodes are updated. The amount of

the update is proportional to their response to the input vector.

Additionally, Nowlan describes various methods for placing the centers of the radial

basis functions in the feature space. These method include:

* K-means center selection with an adjustment to the size of the RBF to roduce a

smoother interpolation.

* Cluster centers are assigned based on the closest mean then the mean is recalculated

based on the average of the samples within its class.

Nowlan tested an R.BF network using Soft and Hard algorithms against each other as

well as against a multilayer perceptron network using a Least Mean Square (LMS) learning

algorithm. He utilized two types of data for this comparison. The first type was hand drawn

digits and the second type of data was human speech in the form of digized versions of
the first and second forinant frequencies of 10 vowels from multiple speakers. In both cases

the RBF network using soft learning algorithmns were abie to outperform the same network

using Hard a-lgorithms.

2.8 Conclusions

Pattern recognition tasks of segmentation., feature extraction, and classification are in

gcnera~l very difficult. Research into the mammalian visual system has given sonte insight

and provided new avenues of approach to these tasks. The wavelet representation provides

varied views of data, depending on the dilation of the basis set or wavelet used. The use

of wavelets can provide a multiresol.'tion representation of visual data.. This provides a

method of representing redundancies in visual data as Daugman and L'Iloomme fou nd. This

representatioa may provide useful features to the biologically motivated radial basis neural

network. The network provides a means of using the wavelet representa.tioii to segment

imagery. Tliis thesis explains and applies these two relatively new tools to the sgiciientation

task.
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III. Theory of Wavelet Analysis

This chapter was co-authored with John (Stewart) Laing and exists in his thesis in

duplicate [19].

3.1 Introduction

Signal analysis seeks to discover the information content of signals needed for appli-

cations such as pattern recognition and signal coding. One approach is to transform a

mathematical representation of the signal into a domain of interest. A simple example is a

coordinate transformation which maps a function, such as a circle, from Cartesian coordi-

nates to polar coordinates. A circle represented by x2 -+- y2 = r2 in Cartesian space is now

more easily expressed by p = r iii polar space. The coordinates x and y or p and 0 provide

alternate representations of the circle.

Another example of this kir.d of transform analysis is the Fourier series expansion. If

f(x) is a continuous function on the intervl r T Ti a " T

2'~ 2'fI

f(x) -- C (3.1)
n

whe-re j2 = -1, and n is an integer. The Fourier series expansion of a function requires the

generation of coefficients, c.

C" T J r 29
2

These coefficients are the amplitude and phase of each member of the Fourier series basis

set needed to reconstruct the original function. In continuous form, Equation 3.2 becomes

the Fourier Transform.

1(0 = j .f(x)C 2 r-;rX1:V (3.3)
_-00 

•

It maps one dimensional signa.ls frcm the time domain to the frequency domain and can be

extended to map two dimensioiial images from the space domain to the spatial-frequencv
domain. From another point of viev , the transform l)rojects the original signal or image

onto the space spanned by the exponential basis set, { j2fftflX, is an integer}, for all integers

i. In this paper we will denote this set with the symbol EL,.
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Unfortunately, the Fourier Transform representation gives no information as to the

location of the frequency characteristics in the original signal. This is due to the fact that the

basis set E, has infinite support. Therefore, any abrupt changes in the time domain require

contributions from the entire frequency domain. The Fourier Transform might indicate that

high frequencies are present in the signal, but it does not indicate where in time that range

of frequencies are significant. In images, edges or lines are areas of high spatial frequency. A

Fourier Transform of an image with edges would provide evidence of high spatial frequencies

but would not indicate where in the image the edges could be found. Finding the location of

unique spectral characteristics can be extremely useful as a feature set in applications such

as pattern recognition and signal coding [11, 24].

Therefore, we need an extra variable in the target or transform domain. In othei words,

we need a transformation that maps a signal to the time/frequency domain or an image to

the space/spatial-frequency domain. The Windowed Fourier Transform (WFT) is such an

transformation.

WFj(a,7) = w(t - T)-jI f(t)dt (3.4)

where w(e) is the window function. This transformation uses the window to localize the

analysis of time and frequency on the signal. However, because the window size is fixed, no

sharper resolution in time can be provided. Due to the uncertainty principle, it is impossible

for this basis set to have arbitrarily high resolution in both time and frequency [10, 34]. Even

the Gabor Transform, a WFT whose Gaussian shaped window gives the best compromise,

still falls prey to the uncertainty principle. Additionally, because the window width is fixed

sharp discontinuities in the time signal are spread across many Fourier coefficients.
• " .....-- i., .- . .- LI-- tlkX"7T...-- le Tran fo.. £... i t

One answer "o the time/Irequn ... i "t:-- I U1j I.Leaq.eIcy leso lO P10l, e~)|lll '5 thel y'CL~VUK. .1 I18111 . I)

allows variations in the size of the window effectively trading resolution in time for resolttion

in frequency. The collection of its coefficients, similar to the Fourier Transform, is a. p)rojec-

tion of the original signal or image onto the space spanned by its basis set. The wavelet basis

set is made up of variations in the translation and dilation of a mother wavelet functio i just

as the {E,,} is made up of variations in the frequency of the complex exponential funcd ion.

This chapter provides the basics for understanding wavelet analysis. It presents the

Wavelet Transformns of both continuous and discrete signals. We discuss Multiresolution

Another approach to the time/frequency resolutioni problem is that of Time-Frequency Distributions

[2(3]
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Wavelet Analysis both in terms of successive projections onto a wavelet basis set and succes-

sive lowpass and bandpass filtering in the Fourier domain. Finally, we address the extension

of Multiresolution Wavelet Analysis to two dimensions.

3.2 Notation

The following notation will be used throughout this document.

"* Z denotes the set of integers.

"* R denotes the set of real numbers.

"* R+ denotes the set of positive real numbers.

"* L2 (R) denotes the space of measurable, square integrable, one dimensional, real-valued

functions .f(z), such that
f- !(.f(X))l2 dx < oo (3.5)

"* L 2 (R2 ) denotes the space of measurable, square integrable, real-valued, two dimen-

sional functions f(x, y), such that

f j If(x,y)12d xdy < oo (3.6)

"* For J, g E L 2 (R) the inner product of f with g is defined as

(f ,g) +0 Jg(.)f (x)dxv (3.7)

"* For' fg E L 2 (R) the convolution of f with g is defined as

f g](x)= + (f(a)g(x - a)da (3.8)

" For f, g C L 2 (R) the correlation of f with g is defined as

If *g](x) = J+_.f(a)y(a - x)da (3.9)
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j

P, denotes the projection operator on L2 (R) such that for any f E L(R)
.I

Pf = (f 0 (3.10)
n I

where {•bj is a complete basis set and n E ZV

3.3 The Continuous Wavelet Tran.sform

The basis functions in wavelet analysis, {4,,b}, are derived from a single function calledA

the mother wavelet, O(x). It acts as the window in the Wavelet Transform whose size is

varied by the dilation parameter, a C R 4 . Like the Windowed Fourier Transform, it has a

translation parameter, b E R. x

O'b(X) = .--4( ) (3.11)

The term normalizes the energy of each basis function. Figure 3.1 shows dilated and

translated versions of a mother wavelet.' The function in the middle is the prototype function

where b = 0 and a = 1. The function to the right is translated by b = 15 and dilated by

2=. And finally, the function to the left is translated by b = -20 and dilated by a = 2. All I
such possible dilations and translations of the mother w;velet, 4'(•9) make up the elements i
of the set {4t~b}.

This basis set provides narrow windows for sma.ll o isolating discontinuities in time j
that are spread over a broad range of frequencies and wide windows for large a that have

better frequency resolution. The Continuous Wavelet Transform for a real mother wavelet

4 is [14:7J
1 400 x - b"If(a, b) = ] f(x),,(-)dx, a C W, b E R (3.12)

With this transform, a wavelet coefficient is obtained for each dilation and translation of the

mother wavelet.

If the Fourier Transform of the mother wavelet, V'(x), denoted by 'F(w), satisfies the

condition that

C = f t(W)12/Iwldw < oc (3.13)

"ilhe relationship of this basis set 0, to the mother wavelet 4'(x) is discussed in Section 3.6 of this chapter.
3 kaplacian of the Gaussian O(Z) = 2 7r - x1 ) 0.
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Figure 3.1. A Typical Mother Wavelet

which requires that T(0) = 0 4, an inversion transform exists and is given by [14:8]

f() - b)Wi(a b dadb (3.14)
V\t ,-00 JO a a-

The wavelet transform pair given in Equations 3.12 and 3.14 are analogous to the Fourier

2)'ansform pair of Equations 3.1 and 3.3. As the dilation parameter a varies, the window
A idth of function -/(4-•) varies. Since small values of a correspond to small window widths,

a. vure inversely with the frequency detectable within the window. Therefore, the wavelet

t.rarsforir isolates time discontinuities or abrupt. changes in time at the expense of low
frequency resolution at high frequencies. In many applications, the important information

conteint ot tihe signal is contained in the quick transitions of the signal in time. For this

reAsso,, th,ý\ Wavelet Transform can be quite useful.

L r-causc the windows overlap when the parameters (a, b) are varied continuously, the

Waveiet Traisform is highly redundant. Therefore, it is possible to evaluate it with a discrete

sci ut l :asis functions in much the same way that the Fourier expansion of Equation 3.1 repre-

sentrs a signai with a set of discrete exponentials. The time/frequency plane evaluating grids

are .'he,, •. in Figure 3.2 for uniform time-frequency sampling associated with the Windowed

Fourictr 'it-ansforni and the nonuniform sampling of the Wavelet Transform. Each dot in the

"lThe _w in the (enlomiIator of Equation 3.13 requires that 'J*(w) vanishes as w approaches zero.
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lattice "d.icates the localization in the time/frequency plane of one resolution cell, showing
the ceiiter of the time window and corresponding bandpass filter. In this figure, we can see

. . . . . . . . . . . . . . "b

T

Window Fourier Transform Wavelet Transform

Figure 3.2. Time/Frequency Window Localization Lattice [9:41]

that the fixed window widths of the Windowed Fourier Transform have a fixed resolution in
time and frequency; whereas, the variable window widths of the Wavelet Transform provide
"variv.bc resolution in time and frequency. The clustering of grid d6ts at the origin along the

axis of the Wavelet Transform time/frequency lattice indicate the low time resolution

or localizatio.n of low frequencies; whereas, the denseness of grid dots parallel to the shift
axis, b, at high frequencies (large a- 1 ) indicates the higher time resolution or localization of

higher fr-c !uencies.

3.4 The Wavlet Transform with Discrete Wavelets

It is sometimes convenient to use a mother wavelet whose discrete translations and
dilations form an orthonorrnal basis [7]. For this case, the discretized basis set {IV)" where
rn, n. - Z is defined as

¢()= T-• -x - nfl) (3.15)
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where a > 1 and P > 0 [14:11]. In this chapter, we use the dyadic interval defined to be

a = 2 and fP = 1. For the dyadic case, Equation 3.15 becomes

=,-(x) 2--n4,(2-mx - n) (3.16)

Using this form of the mother wavelet in Equation 3.12 yields the Wavelet Transform with

a discrete wavelet 'basis.

2 
+00Wj(Mn) = 2- a (2- mx - n)f(x)dx (3.17)

To check this, consider the Fourier Expansion given in Equation 3.1. We can represent any

function, f E L 2 (R) as
f(x) = _c,,(x) (3.18)

nI

where , ' is the n'h element of an orthonormal basis for L2(R). Equation 3.18 can also be
thought of as the reconstruction of f(x) from its coefficients {c.} in terms of the orthonormal

basis {10,}. The inner product, cn = (f, 0,,), gives the coefficient of the n" term in the

basis. Just as any vector r in three dimensional Euclidian space can be expanded in a set
of mutually orthogonal unit vectors x,y, and z in the form r Iax + a 2y + a3z, we can

expand any function f E L' (R) in a set of mutually orthogonal unit vectors {I,,} in the
form f = ci/,,. If we multiply both sides of Equation 3.18 by any term ,, for m G Z

and integrate, we get

Jx)ax --00 2, C_ VkX)V-kx)ax

But, because of the orthonormality of the set {V1¢j we know that

1( = (3.20)

where 4 ,, is the Kronecker's symbol, and is defined as 0 if m. n and 1 if rn- n. Therefore,

all the terms in the summation of Equation 3.19 are zero except the one in which n = tn.

Thus,

[" f(x)tkm(x)dx = c, (3.21)
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is the integral form we need to find the coefficient of the mik basis element, c,,,. Written

another way, •L:cjation 3.21 becomes a continuous transform with an orthonormal basis that

maps f((x) -. Tj,,i).

Tj(m) = f(x)wonm(x)dx (3.22)

Now, we can insert the crlhonormal wavelet basis set {¢,•} of Equation 3.16 into Equa-

tion 3.22 and get the Wavelet Transform of Equation 3.17. To reconstruct the original signal,

we perform a generalized Fourier series expansion (see Equation 3.18) with the coefficients

obtained with Equation 3.17 and our basis set {4•,}.

f(x) = W1 (m, n)t(x)n (3.23)
m n

The next hurdle in wavelet analysis is to determine the most appropriate mother

wavelet for a specific application. Presently, the appropriateness ofi a specific mother wavelet

is determined experimentally. We first try to match the characteristic shape of the mother

wavelet with the characteristics of the funcStin under n . F nrn ere rnplt dcus-

sion of this issue, see Fastman [14].

8.5 Multiresohdion Analysis

In section 3.3, The Continuous Wavelet Transform, we said that the Wavelet Trans-

form uses a variable length window to examine the function. Increasing window lengths
correspond to successively coarser scales or resolutions (in time or space) of the function-
Therefore, wavelet analysis is sometimes referred to as multiresolution analysis. In this sec-

tion, we will describe each resolution level as the projection of the function onto the basis

set made up of all shifts of a scaling function (not a wavelet) at a fixed dilation or scale.

Multiresolution analysis represents a signal as a series of successive projections, each of which

approximates the original signa.! at a different level of resolution [4, 30]. Here, 'leveP' cor-

responds to a particular dilation of the scaling function. A more intuitive view is that of

successive low pass filtering of the signal with filters of narrower and narrower bandwidth

iepresenting the signal with less and less detail. The filter is related to, and can be derived

from, the scaling function. Both views will be discussed in the following subsections.
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3.6 Multiresolution with Projections

The projection operator Pf projects a function f onto a basis set {1,,} (see Section
3.2, Notation). For mathematical convenience we consider a scaling function O(x) whose

translations and dilations form an orthonormal basis. This is possible according to Stephane

Mallat's Theorem 1 which states:

Let (V )IEz be a multiresolution approximation of L2 (R). There exists a unique
function O(x) E L 2 (R), called a scaling function, such that if we set q 2, (x) -

210(27x) fo. j E Z, (the dilation of O(x) by 2j), then

(V 2'(X - 2-jn)),,z (3.24)

is an orthonormal basis of V2 ,

[23:676]; see [23:690] for proof. In Mallat's theorem, VV is a vector subspace of L 2 (R) whose

basis set is the scaling function O(x). In being consistent with our earlier notation, where

MVlallat uses j to deenote level or scale we use the integer rn and the integer n to denote shift.

One property of Mallat's set, {onJ,} is that each element is identical in shape to every other

element but differs in height by a power of two and differs in relevant width by a power

of two. This is known as the dyadic case. Figure 3.3 shows a rectangular scaling function

dilated three times. With an orthonormal scaling function dilated and translated dyadically,

we can use Mallat's discrete projection operator

tnxtn 2- V' . . . ... ...

fl2mJkX) L LJ, 92" - L fl'rnI'x - 2n (3mz n)).25)

which generates an approximation of the original function at a level of resolution 2"'. The

set of inner products

{(f, 2-( - 2-r'n))}m,•Ez (3.26)

characterizes an approximalion of f at scale m. In Mallat's terminology, A 2m projects

f C L 2(R) onto the subspace V,.. For notational convenience, we now drop t he subscript 2

and rewrite V' for V2,.
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level m-3 ¢•-3 1
8 

-

level m-2 onIO+ 2

4 4

level m-I €•~~n+-11¢,+24

level in-i OMr-1 4

2 2 2 2

-
2+

level in, 8
oil+4

onn +4

,on+6 
-

1 1 1 11 1 1

Figure 3.3. A Rectangular Scaling Function Dyadically Scaled

The family of subspac(:s V,, created by successively coarser approximations of L2 (R)

has the property that

•C V- 2 C V,,_C C rC C/ +l C VE+ 2 C (3.27)

That is, each resolution approximation of L2 (R) is contained in (is a subset of) the next

higher resolution approximation. Because a physical sampling device samples at a finite
rate, any signal, f. is represented at iLts finest level of resolution by A,,j. For reference, we

3-10



choose m0 = 0. Then for a finite number of resolutions, M, we have

V-(M_1) c ct (M2) C ... c V1 c Vo (3.28)

Since Arnf E V{,, each approximation of coarser resolution A,-If can be derived from its

parent projection of finer resolution Amf.

The difference between two adjacent scales, m and r - 1, given by

Dm-,f = AJf - AP-If (3.29)

is called the detail signal at scale m - 1. It contains the details in the signal f that are lost

during the projection from level m to level m - 1. The detail signal, D,,-If, is the result of

projecting f onto the basis set of a vector space, 0 .- i, which is orthogonal to V--,, with

the projection operator Dn-1. Analogous to the projection Equation 3.25, this operator is

described in terms of a basis set5 7bP, which spans the space O,i.

(, x -2-mn Z:(f, 02m (0 -- 2m)0 ( - 2.'n)) (3.30)
nEZ /mEZ

Equation 3.30 generates the difference between approximations. It is characterized by the

set of inner products

{-2n))},ncz (3.31)

This is just Equation 3.17 written as an inner product. Thus, the mother wavelet, O(x),

generates a basis set, {v,}, of t he vector space O,,. Figure 3.4 shows an example of a mother
wavelet dilated and translated dyadically. It follows from Equation 3.29 that the sum of all

the detail signals and the coarsest approximation equals the origiiial signal.

f(x) = D-.f + ... + D-(M-,).f + A-(AfI-)Jf (3.32)

Equation 3.32 is the Wavelet Decomposition of f(x).

5 lHere, /,(x) is the particular mother wavelet associated with the scalinig function, O(x) used in Equation
3.25. Sonie researchers derive the 4 given a V. and others derive the ?P given a 0 [9]. In this thesis, we use
previously derived 0,0b pairs [23] [8].
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3. 7 Multiresolution with Filters

An alternate view of the multiresolution approximations is that of filtering the image
with a set of low pass filters with successively narrower bandwidth. The inner products of
-Equation 3.26 are convolutions evaluated at the point 2-"n (see section 3.2, Notation).

+]
(f, 02-(* - 2--n)) f(x)qO,.(x - 2--n)dx [(f * €5 2,(-e)](2-'n) (3.33)

-00

An alternative approach uses corrt.!at;ons where the argument of q is reversed (see

section 3.2, Notation).

level ni-2
2

""h -'r fi8

level in-i

4

L[
level M

,1 4 4
X

Figure 3.4. A IHaar Mother Wavelet Function Dyadically Scaled
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(f, 02.•( - 2-` mn)) = f(x)42m(2- m n - x)dx = [(f * 42m(x)](2-"n_) (3.34)

Convolution and correlation are interchangeable. We choose convolution for consistency with

current wavelet literature. Of course every good electrical engineer recognizes convolution

as multiplication in the Fourier domain

[f g](x) - F(w)G(w) (3.35)

where F and G are the Fourier Transforms of f and g respectively. The Fourier Transform,

IO(w), of the scaling function, O(x), is a low pass filter with a specific bandwidth. The Fourier

Transform of each successively wider scaling function (dilated by a power of 2) will also be

a low pass filter, but with a bandwidth smaller than that of the previous scale or level. This

operation of successive low pass filtering produces "smoothed" versions or approximations of

the original signal. Each version contains less information or detail than its predecessor. In

the case of images, each approximation is "blurred" by the amount of high spatial-frequency

information that is filtered out. Finally, the lowest or coarsest level ap-loximation occurs

when all frequencies have been filtered out and only the dc component of the signal remains.

In multiresolution analysis, we are primarily concerned with the information contained

in the difference between levels of resolution. In the case of filters, the difference between two

lowpass filters whose bandwidths vary by a power of two is a bandpass filter with a basndwidth

of one octave. This bandpass filter is provided by the Fourier Transform, % (w), of the wa~vele_

function, 4'(x). We can express the inner products of Equation 3.31 as the convolution of

the signal with the wavelet function evaluated at 2"n as we did in Equation 3.33.

(f, v2,-(0 - 2`"n)) = [.f* ?f 2,,(-)1(2"f) (3.36)

Figure 3.5 shows a typical scaling function, O(x), and the corresponding low pass filter,

@(.f), its Fourier Transform. Here f denotes frequency measured in Hertz, not the function

f used previously. Figure 3.6 shows the wavelet function, 0(x), which corresponds to the

scaling function of Figure 3.5. It also shows the bandpass filter, 'J(f), the Fourier Transform

of ,(ax). These filters,(.(f) and t(f) correspond to the same level of resolution or scale.

Superpositioning them, creates the lowpass filter of the next higher level of resolution. Simi-

larly, adding the next bandpass filter will create the next lowpass filter and so on. Therefore,

any signal or image can be decomposed into a. set of signals or images each containing a
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one octave bandwidth of the original signal or image. In this manner, we can construct a

bank of bandpass filters from a mother wavelet for the purpose of wavelet decomposition.

Furthermore, if we choose our mother wavelet to be orthonormal, the resulting bandpass

filters will completely cover the frequency plane such that the information content of each

signal or image in the decomposition is unique. A major advantage to the filtering approach

as opposed to the projection approach is the decrease in computational time complexity of

the decomposition prucess. Using a Fast Fourier Transform (FFT), the scale and wavelet

coefficients are computed in 0(nlog(n)) time. Alternately, using spatial convolution when

the size of the filter functions are much smaller than the length of the signal 0(n) time is

required, where n is the number of samples in the signal.

3.8 Two Dimensional (2D) Wavelet Transform

The Wavelet Transform can be extended from one dimension (ID) to it dimensions,

n > 1. For image processing, we need a 2D Wavelet Transform to map images from the space

damain to the space/spatial-frequency domain. Malat's Theorem I ii valid for L2 (F 2 ) and

there exists a scaling function 'P(x, y) whose dilations and translations are an orthonormal

basis for L2 (R2 ) [22:682]. The symbol 4 is used here for consistency with referenced material

and should not' be confused with the Fourier Transform of € denoted previously with this
symbol. The O(x,y) can be a separable or a inseparable function. We will discuss the

separable case in which 4@(x, y) is written as a product of two identical ID scaling functions.

ýD(X'y) = ¢(x)¢(y) (3.37)

For the separable case, the inultiresolutioin projection approximations of th'- image at level

m can be obtained from the following set if inner products

A1.. f(x, y) = (2-' > 7 (f, 4,(* - 2inn) 4 ,,(e - 2-'n 2))1,•(x - 2-ni ),,q(y - 2-"712)
1iiEZ ",EZ mnEZ

(3.38)
Here we use the same mi and z in both x aid y since we dilate and shift equally in both

dimensioiis. However, in the more general cp-se x and y could be shifted and dilated inde--

pendently.

We obtaiin the detail image just as in the ID case in Equation 3.31. The detailed image

at resolution 7n is equal to the orthogonal projection of the 2D function on the orihonorinal
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F~igure 3.5. Typical Scaling Function and its Fourier Transform [23:677]
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complement, 0 ,,, of VM,. The orthonormal basis of 0 m is composed of the three wavelet basis

functions PJ(x, y), .V(x, y), 'P3(x, y) which we construct from the ID scaling function, ,
and its corresponding wavelet, ' [23:683]. The symbol T is used here for consistency with

referenced material and should not be confused with the Fourier Transform of ?P denoted

previously with this symbol.

(x,y) = W,,(x)?,b(Y) (3.39)

T'P (x,y) = 0-m(W)d0n(Y) (3.40)

' 3(x,y) = 0.b(x)0,k(y) (3.41)

There is one detail projection for each of the three wavelet bases. Applying Equation 3.31

to each yields [23:684]

DLf(x,y)= (2-" Z S (f,ui 'I'(. - 2-n 1 ,.- 2-'n 2))P.•x - 2-"'n1 ,y- 2-mn 2)(
\ niEZ n;,EZ] "eg

(3.42)
2 \

D~nf(x, Y) = 2 (, ( - 2 m'n,. -2m7Z 2 ))qPl (x -2 m'n 1 , y- n2)
\ nlCZ r' 2 EZ EZ

' (3.43)

D' f(x,y9) = (2 (f, T3_(0 - 2 m'n 1 7  2-mn)1' - 2-ny- Pn2
n EZnY2 EZ .. tEZ

(3.44)

The image can then be completely represented at any level of resolution rn - 1 by sum-
ming A,,f and DP f for i = 1,2, 3. Figure 3.7 shows an approximation of the locations of
the. correscNnnAinn lmAr"- n fce E InnAlo Wf-fr f-~ +1,- 9.0 4rt1- Ong~ j f

* LU W L VLL flIVt. £IJ WV1UtAIiO~~~ iii ir I

frequency domain. This figure demonstrates the spatial orientation of each bandpass filter.

The filter formed by V (w., wy) is oriented horizontally, w1(wr,wv) vertically, and 'a(w".w•)

diagonally. In many image processing applications it is desirable to obtain a representation
which is not only a space/spatial-frequency representation but also is sensitive to specific

orientations. Although Malla.t generates three orientations as represented by the three detail

signals of Equations 3.42 through 3.44, recent work by Cohen and Schlenker at AT&T Bell

Laboratories suggesst more are possible [5].
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D3 D3 f

DIf D'If D2•

2 2

d ~ 2d f 2~

+D~jf A D~j f

D3Dl 3f D 3 jf

Figure 3.7. Orientation of Wavelet Decomposition Filters in the Fourier Domain [14:65]

3.9 Con clusion

The predominate tool in signal analysis for the past three decades has been the Win.-
dowed Fourier Transform. It provides a representation of signals in the time/frequency

domain, However, this transform uses a constant size window; thus, it provides only a fixed

resolution of the location of the frequency characteristics of a signal in the time domain. A

new engineering tool, the Wavelet Transform, provides an alternative by using multiple sized
windows effectively trading resolution in time for resolution in frequency for applications in

which localization of frequency characteristics in time is more important for high frequencies.
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IV. Multiresolutkon Analysis Algorithms

4.1 Introduction

This chapter discusses two different approaches to using wavelets in multiresolution
analysis. It is the result of a combined effort with John (Stewart) Laing and exists in du-
plicate in his thesis [19]. The first approach uses the scaling function t(x) associated with
a mother wavelet O(x) to decompose an image into successive V.m and W, space projec-
tions where V,, and Wm are vector spaces in L2 (R) (see Chapter III) and are orthogonal
compliments of each other in the next larger space Vm+i'. The second approach uses a set
of quadrature mirror filters H and G constructed from a mother wavelet and its associated
scaling function to decompose a signal or image into sets of coefficients. These coefficients
characterize the V and W space projections. Following the discussion of each approach, we
include implementation examples in support of the theoretical explanations.

4.2 Multiresolution with Approximations

This section discusses our implementation of multiresolution decomposition using the
Haar wavelet. bases. First it defines the Haar function as an orthogonal wavelet basis suitable
for multiresolution decomposition. Then, it explains our implementation of decomposition.
Finally, we provide a.tn example decomposition using our decomposition program.

4.2.1 V space, Wspacc, and Haar basis. In one dimension, the Haar mother wavelet
• C 1 r- 11 

"

is defi•ed as ImoIOWS:

if 0 < x< 2

if < X < (4.1)

0 otherwise

The one dimensional scaling function that corresponds to the Haar lnother wavelet is defined

as follows.
I)if 0 - (4.2)
0 otherwise (4.2

t In this chapter, the symbol W,, replace,; the 8ynibol O,... used in Chapter I11, Section 3.3.
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The two dimensional scaling function, 4(x, y), is the product of O(x) and 0(y), where 4(x, y)

is a two dimensional rectangular function. In general, '1 is scaled by an amount proportional

to the length of its interval of support, I, where its values are non-zero. In the dyadic case,

the length of the interval of support is given by

{1I 1n = 2lmnZ(4.3)

for the shift n and the level m. We use the convention that level 0 is the finest resolution

level. This means that the projection in the Vo space represents the image at its original

sample density. In this case, the shift interval for the 0 and 0 functions is

I 1 (4.4)
1

which is equal to the sample size of the image, one pixel. The scale factor is, therefore, 1'a

Now, we can write an expression for the one dimensional 0 with the proper scale factor as

follows

0 otherwise

From Eqi'ation 4.5, we bvild a two dimensional scaling function with the product mentioned

above as foIlows 2-mx yCi
M•(xly) ==xY•1 (4.6)

0 otherwise

Therefore, our convention allows us to easily derive the size of 0 in terms of its interval

of support from 2 -m, where m is the level of resolution. As mentioned above, the finest

resolution level corresponds to i = 0 and is contained in th- vector space V0 . The riaximum

resolution level is also easily found. This is done by finding log2(N) where N is the size of

the NxN image under analysis. For example, if the image is 512x512, the largest (b that

will fit completely on the image is 512x512. Since the size of D is related to the level by

2--, we find mn by taking 1og 2(N). In this example, that would be 1og 2(512) =- 9. Therefore,

all contributing levels of resolution range from zero wo nine, where level zero is the finest

resolution and level nine is the coarsest. Though level zero is exactly the original image, we

will continue to consider it for programming convenience.

The projection on the vector space Vm of the inmage f(x, y) or the approxiination of
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the image at the m"tt level of resolution ik characterized by the set of coefficients, {c%} where

m n =< > (4.7)

Then, the projection is given by

Am f(x,y) , • c%,I(x,y) (4.8)
IL

Given that the orthogonal complement in Vn-I of the vector space Vm is Wn, which means
that W,l = Vm-i - Vm, we can find the projection of the image onto the vector space W,,

from Equation 3.29. It is possible to calculate the wavelet coefficients, d,, that characterize

the projection into the orthogonal vector space IV. in a manner similar to Equation 4.7

using

m = (OP ,f) (4.9)

where '(x, y) = tb(x),k(y) But this is not necessary since we can find the projections Dj(m)

more directly from Equation 3.29

4.2.2 Haar Transform Program The data flow diagram in Figures 4.1 and 4.2 shows
the operation of the Wavelet Decomposition program, wave. This program, is written in the

ANSI standard C programming language. It reads in an image from an ASCII file and writes
its output to ASCII files; the 4) coefficients, the projections in V space, and the projections

in W space. The number of files produced is determined by the size of the input image to

be decomposed. For example, the image of Lenna shown in Figure 4.3 has a resolution of

480x512 pixels. Therefore, ten files each will be produced for the 4) coefficients, the V space

projections, and the IV space projections. the 0 coefficients are calculated by taking the

inner product of the appropriate level 4) and the imagc, Equation 4.7. The projections of

the input image onto the V space are found by multiplying the 4) basis by the 4) coefficients,

Equation 4.8. Then, the projections in the W space are lound from the difference of V space

projections at adjacent levels, Equation 3.30. The source code for the wave program is made

up of ten files. They are provided in their entirety iii Appendix A.2.
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WAVELET DECOMPOSITION

PROGRAM

PHI
IMAGES COEFFICIENTS

A WAELET V SPACE
( ANALYZER PROJECTIONS

MENU -W SPACE
INTER FACE PROJECTIONS

Figure 4.1. Dataflow Diagram of the Wavelet Decomposition Program, First Level

4.2.3 An Example Decomposition We subjected a 480x512 sampled image of Lenna
to the Haar tranisform program and printed her projections in the V spaces and the W

spaces for resolution levels one through nine according to the convention established above

t(5 ,, F;gre... A.A thru•ugh. A 1.5

The K4 space projections are made viewable by adding 255 to their gray scale va!uies
and dividing the sum, by two. This process centered the values about 128 instead of zero.

The low energy contained in the W space projections is as expected, since it represents only
that part of the image which correlates to the 0, of the corresponding level. In other words,

only small amounts of0 thg whole image lie in the scale bandwidth of the corresponding scale
of 4, at that level of iesolution. The projection onto W1 , = Vo -. 1/ space showed only the

high frequency information, changes that occurred within the laar interva! of support or a

2x2 pixel area. This is scea :n Figures 4.10 through 4.15 in which six projections onto the

W spaces are shown. On the other hand, the V space projections get progressively blurrier
with larger in, corresponding to coarser levels of resolution. They represent all frequencies
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of the image from the dc component, 14j, to the current level. All V space projections of
coarser resolution are contained in a V space projection of finer resolution, smaller m (See
Figure 4.4 through 4.9).

WAVELET DECOMPOSITION
PROGRAM

PRODUCT � PHI
COEFFICIENTS

_____ U

(\PROJECTION PROJECTIONS

W SPACE

INTERFACE PROJECTION PROJECTION S

I _________________________________________________________________________

Figure 4.2. Dataflow Diagram of the Wavelet 1)ecomposition Program, Second Level
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Figure 4.3. Projection of Lenna onto Vo
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Figure 4.4. Projection of Lenna onto V1
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Figure 4.6. Projection of Lenna onto V3

4-9



F igure 4.7. Projection of Lenna onto V1/
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Figure 4I.8. Projection of Lciinat onto V5
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i
Figure 4.9. Projection of Lenna onto V6
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Figure 4.10. Projection of Lenna onto W,'
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Figure 4.12. Projection of Lenna outo W3
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Figure 4.13. Projection of Lenna onto W4/
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Figure 4.14. Projection of benna onto IF.5
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Figure 4.15. Projection of Lenna onto W46
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4.2-.4 Histograming To view the histogram of grey scale values of the projected im-
ages, the Khoros signal and image processing system developed at the University of New

Mexico [31]. Figures 4.16 and 4.17 show the resulting histograms of the original Lenna im-

age and the first three levels of the V and W projections. These results show how the V

space projections contain a wide variety of grey scale levels compared to the W projections.

Therefore, the W space projections would be a good choice of representation from which to

code and compress the original image.

4.2.5 Thresholding The histograms discussed above provide a good measure of the

grey scale values that are important to the information content of the image. For example,

the histogram of the W1 projection shown in Figure 4.10 shows that most of the information

content of the image, the essence of Lenna, is contained in a relatively small number of pixels

in a small range of grey scale values to either side of grey scale value 128. To isolate this

information from the vast amount of data required to represent the entire 512x512 image,

we developed a routine called threshold to eliminate or zero out the large number of pixels
in the grey scale range around the value 128. Our routine als.o bna;.zes the remaining grey

scale values. If a grey scale value falls within the thresholding window, it is set to white or

255, and if a grey scale value is outside the threshold window, it is set to black or 0. Figures

4.18, 4.19, and 4.20 shows the results of executing the threshold program on the first three

levels of W space projections. These figures demonstrate the edge detection capability

of a Multiresolution Wavelet Decomposition. These imnages were produced by chosing to

eliminate all grey scale values between 131 and 125. The threshold routine, whose source

code is listed in the Appendix F.2, allows the user to select the upper and lower bounds of

grey scale values for thresholding.

4.3 Multiresolution with Filters

This section briefly reviews Mallat's multLiresolution approximation algorithm [23:6771.

It also expands on selected areas of his paper that are vague or incorrect. Because the theory

of multiresolution analysis is covered in Chapter II of this thesis, we begin here with the

specifics of Malla,'s algorithm. The specific equations referenced in this section are taken

directly from Mallat's paper [23].

4.3.1 Multiresolution Decomposition In Mallat's Equation (10) [23:677], he gives the
"orthogonal projection" of a signal f(x) ouno a scale space, V, of an arbitrary level of
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resolution, 2i for j E Z as

A 2,f(x) = 2-j (f,02i( -2-n))02(x - 2-in),Vf C L2 (R) (4 10)

Then in Equation (1.1) [23:677], he adds a superscript d to his notation indicating that the

inner product of this equation is a "discrete approximation" of f(x) at the given level of

resolution. Mallat's Equation (11) is just that inner product.

21= {(f, 02P(S - 2-in))},ez (4.11)

The discrete set :)f inner products in Equation 4.1.1 is the set of scaling function coefficients

previously given in this thesis in Equation 4.7 as c' where n corresponds to Mallat's n and

7n corresponds to his j. From this point on in his paper, Ma!lat refers to this set of inner
products as "the image". While his explanation is easy to miss, it is true that lie treats

a discretely sampled signal or image as being equivalent to these coefficients al the. finest

level of resolution without ever taking tile inner product. In other words, he considers the

sampling process of the original analog signal or image to be an approximation of that signa.l

or image at the finest level of resolution, sample density, allowable by the sampling device

(ie. digitizer or scanner). Ile treats this set of samples as equivalent to the scaling function

coefficients at the finest Jevei of resolution, j = 0. We have adopted his convention, but

include here a brief explanation that considers the digitally sampled signA or image as the

projection of the original analog signal or image onto the scale space, V 2,, where J = 0 as

the finest level of resolution corresponding to the sample density of our input dat,-t. This

approach would add two steps to Mallat's algorithm - one at the beginning to perform the

inner product with 0 20(-C - 7) and one at the end to perform the discrete sum tha.t projects

the reconstructed scaling function coefficients onto the scale space a.t level j = 0. Performing

the inner product of Equation 4. 11 via. convolution the level j = 0 scale coefficients are

A'.f = {(f * 0(-)(.)}nz (1.12)

for one dimension and

AJ= { (f • ¢~(-.) * ¢ (-.))(n.,r,)l,,,,,cz ('1.13)
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for two dirnens ons. Obtaining the scale space projection from these coefficients at the end of

reconstruction is just as straight forward if we think of O(x) as a discretely sampled function
with k samples. For illustration, replace the continuous variable x with the discrete variable

k. Then, inserting Equation 4.12 into projection Equation 4.10 yields

00

Alf(k) = j (Adf)(n)OI(k - n) (4.14)
n= -oo

which is the rectangle approximation of the Riemann integral of the convolution

((A'f)(n) * 1(n))(k) (4.15)

Using Equation 4.15 as the final step in our multiresolution reconstruction program, we

obtain the discrete inultiresolution approximation of the original signal. The two dimensional
form of Equation 4.15 using the discrete variables k and I in place of the continuous variables

x and y respectively is

Af(k, 1) ((A f)(n, m) 0 1,(n) * ¢l(m))(k, 1) (4.16)

Because these extra steps ad(I no additional accuracy to Mallat's multiresolution analysis
algorithrii, we omit themn as lie (lid. However, their explanation provides a clearer transition

from the theory discussed earlier in this thesis to the implementation described in this

chapter.

in his Equation (15) [23:677], Mallat introduces the "discrete filter", H, "whose impulse

response is given by", h(n). In this thesis, we will refer to h(n) as a responsr function and
refer to H as afillct. Mallat shows in the one dimensional case that the set of scale coefficients

AM3f at resolution level j can be found by convolving the response function h(n) with the

set of scale coefficients A',+.f at the previous level of resolution j ± 1 and evaluating the

result at even values of the argument n. OUr interpretation of his Equation (16) [23:678] is

A {,.f= {(A21+4 f .)(2 n)) j,,cz (4.17)

where 4(n) = h.(-n). After this point, Mallatt frequeinly u.ses the upper and lower case 'I'

interchangeably even .hwiigl the operation clearly calls for a ,pace domain convolution, not

a. convolntiou in tOW- freqý le(ncy doirain. lFquation 4.1 7 describes the decomposition of a set
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of scale coefficients at level j + 1 into the set of scale coefficients at the next coarser level
of resolution j. The detail that is lost in the multiresolution transformation is described by

the wavelet coefficients which are in Mallat's notation D 2,1f. These coefficients are found by
way of a similar multiresolution transform using another filter, G, whose response function

is g(n). This transform is given by Mallat's equation (28) [23:681] and is interpreted as

D2,f = {(A d 4 1f *(2n)}j,,,kEZ (4.18)

where 0(n) = g(-n). The filters G and H have the following relationship [23:681]

g(n) (-- I)Ih(1 - n) (4.19)

Notice that the h(n) and g(n) are reflected about n = 0 and shifted relative to each other.
Even though the convolution operation occurs for all shifts, it is very important to maintain

the relative shift of y(n) with respect to h(n). In other words, these response functions
L To, t ~ .must be dcfincd to have a relative c'Set of one, as Suwi 4 quativn 4.19, fo rw,...•...c, ve

convolution routine is used.

Now, armed with a set of response functions, h(n) and g(n), Equations 4.17 and 4.18

can be implemented iteratively to decompose the scale coefficients of a signal at the finest

level of resolution into the scale coefficients and detail coefficients at each level of resolution.

Because the number of scale coeflicients liminishes by a power of two at each it -ration, the

extent of this decomposition is limited by the size of the response functions. For example, a

signal, f(x), with 128 discrete samples decomposed with response functions, h(n) and a(n),

that have Ii samples each can produce scale and detail coefficients, A , f and D 21f, for four
levels of resolution. At the fourth level, the scale coefficient contains only eight elements

which is not enough to meaningfully convolve with the ci wen element response functions-

The response function It (it) and its lowpass filter H that correspond to the cubic spline

mother wavelet of Figure 3.6 are shown in Figure 4.22. Using Equation 4.19, we derived the

response function g(n) from h.(n). It is plotted alo.,g with its hiighpass filter G in Figure

4.22. From these plots, it is apparent that Ii is a. low pass filter which simooths the signal
aind G' is a high pass filler wtich captures the details lost in die smoothing process. The

algorithm given by lE;quati'nis 4.17 and '1.18 is diagramed in Figure 4.21 which i• redrawni

from [2:3681].
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4.3.2 Two Dimensional Multiresolution Decomposition The two dimensional case is a

natu ial extension from one dimension. Equations 3.38, 3.42, 3.43, and 3.44 give the scale and

detail coefficients. These correspond to Mallat's Equations (39) through (40) [23:684]. Our

interpretation of these equations when the response functions h(n) and g(n) are incorporated

is as follows:

ý1- ap ~2n D2

2n :Getp one sample out of two

X z(n) :Convolve with response function x(n)

where i(n) = x(-n)

Figure 4.21. One Dimensional Multiresolution Decomposition [23:681]

Af = (A,+, f)(k, 1) * h(k) * h(l))(2n,27n) (4.20)

D.,/ = (A2J+1 f)(k, 1) * h(k) * j(l))(2,t, 2-n) (4.21)

D2f = (A2.4 ,.f)(k, 1) * O(k) * h(1))(2n, 2rn) (4.22)

D = (A f)(k, 1) •.(k) * ý(1))(2n, 2m) (4.23)

for j, 1, m, nu C Z where f(E, y) c L2 (R2 )). The scale coeflicients, A2f, become succes-

sively smoother versions ol tlicmsclv-s and the details that are lost in smoothing are captured

in the three sets of detail coefficients, D211 fI D2)J , and D• f. Each of these sets of detail

coefficients represents an oricnta-tion a.• showmi in Figure 3.7.
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FýT of H(n)
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Figure 4.22. R s ponse and Filt er Functions Based on Cu bic S pline W avelet
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in Equations 4.20 through 4.23, separate discrete variables k and I are used to emIpha-

size that the response functions h(n) and 9(n) operate on rows and columncas independently.

This emphasis plays an important role in understanding the mistake in Mallat's Figure 12

[23:685] which diagrams the two dimensional decomposition algorithm. There is an incon-

sistency between the text and the figure that we resolve in the following manner. First, we

correct in boldface the text in paragraph A, first subparagraph, fifth sentence to read

We first convolve the cols of Ad,+lf with a one-dimensional filter, retain ev-
ery other row, conlvolve the rows of the resulting signals with another one-
dimensional filter and retain every other column.

V fJ h(n) 2

+d

+2 f2+ f

(T) :Convolve withi responise funiction x(n) 0 Add point by p)ohit

Add one zero after each sample *2 : Multiply by 2

Figure 4.23. One Dimensional Multircsolution Reconstruction [23:682]

Next we correct his Figure 12 exchanging the words 'columns' and 'rows" at the top of the di-

agrain. •o understand why I hese corrections are necessary, consider the indepcndent wia.ture

of the one dimensional convolutions performed on rows and columns. In the decoinpo,•ition

process, the rows/colurilns and respective h(n)/q(n) convolution pairs must be the same as in

the reconstruction process. Ill other words, the reconstruction and deconmposition processe.s
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must be mirrors of each other. Figure 4.24 diagrams the algorithm given by the pyramidal

transforms of Equations 4.20 through 4.23. Figure 4.24 is Mallat's Figure 12 [23:685] redrawn

and corrected.

rows

columns §(n) 2n D~,f

I~~~n 2.~ Ln ~ )K ~ A,

2n : Keep one sample out of two

P 2n

x(n) : Convolve with response function x(n)

--- ) k--,( 2n) ... .. j

Figure 4.24. Two Dimensional Multiresolution Decomposition [23:685]

4.3.3 Mittiiresolution Recony.,truct ion In his Equation (32) [23:682], Mallat shows that

the scale coefficients at any level j + I call be reconstructed from the scale and detail coeffi-

cients from the adjacent level j. Our interpr'tation of this equation is

d , d k k
A 2.•1 ./= 2((A,[/)(-) k h(k))(n) + 2((D 2,.f)( 7) * g(k))(n) (4.24)
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This equation is implemented by inserting zeroes between each sample of A' f and D 23f and

convolving the results with h(n) and g(n) respectively. Finally, the convolution results are

added point by point. The factor of two comes from the way Mallat normalizes his response

function and is not necessary if implementing a Daubechies response function as given in 191.
Figure 4.23 diagrams the algorithm of Equation 4.24. This figure is redrawn from Figure 7

in [23:682].

4.3.4 Two Dimensional Multiresolution Reconstruction The reconstruction of a func.-

tion f(x,y) E L 2(R 2 ) from the coefficients obtained by using Equations 4.20 through 4.23

is a natural extension of the one dimensional reconstruction. We apply the same notation

extended to two dimensions. Again, we use the discrete variables k and I for row and column

operations respectively. It is important for the rows/columns and h(n)/g(n) reconstruction

convolution pairs to match the decomposition convolution pairs. In other words, the recon-

struction must be a mirror of the decomposition. This point is illustrated in Equation 4.25.

For the two dimensional case, the reconstruction equation is:

A d k I

Af 4((A•2f)(-.,-l ) *h(k) * h(l))(n,m) +

4((D',)(k' * h(k) * g(i))(7t.,rin) +2 2
4(D2, f)( k ,) I

4((D, f)(- -) • g(k) * h(1))(n, n) +
2'2

4((D2, f)(, -) g(k) * g(l))(n, m) (4.25)
2'2

whei e n,m E Z.

A row of zeroes is inserted between each row before the columns of each coefficient

set is convolved with the designated response function. Then, a. column of zeroes is in-

serted between each column before the rows are convolved with the designated response

function. Finally the convolution results are added. Again the factor, this time four, is for

normalization of the h(t) for the cubic spline as derived by Mallat and is not necessary

if implementing Daubechies h(n)'s [9]. Figure 4.25 diagramis equation 4.25. This figure is

adapted frorn Figure 13 in [23:686].

At. any level of resolution, the scale or detail coefficients can be projected onto the scale

or detail spaces respectively by using the general form of klqua.dions 4.15 and 4.16 given here
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rows

D 3 f (n_!

D2f 2~)7_ columns

*4

D' hf g (n)2 2

d d

A, f h(n)

x(n) Convolve with response function x(n) ( Add point by point

_Add one zero after each sample *0] Multiply by 4

Figure 4.25. Two Dimensional Multiresolution I'constructionl [23:6861
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in Equation 4.26 for the one dimensional case and in Equation 4.27 for the two dimensional

case.

A 21f = ((A',)(n) * k21(n))(k) (4.26)

A22f =- ((A d,)(n, 7n) * 0 2i(n) * 0 2 J(m))(k, 1) (4.27)

4.3.5 Fine Points Of The Implementation of the Algorithm This section will address

some of the more subtle problems which we encountered in the implementation of the mul-

tiresolution algorithm. Readers interested in implementing this algorithm, take heed.

4.3.5.1 Missing Coefficients in the Reconstruction The Multiresolution Algo-

rithm promises an exact reconstruction can be accomplished from the retained coefficients

of the decomposition process. The number of coefficients of the approximation A.if plus

the number of coefficients of the detail D 21f should be equal to the number of samples of

the original signal or image. Since we generate the coefficients with the shift, multiply, and

sum process, there are always more coefficients than tile original number of samples. The

number of resulting coefficients is equal to the number of samples of the original signal plus

the number of elements in the filter. We discard the least important coefficients, those that

border the image or signal. This results in an inexact reconstruction of the border or edge

of the signal. This can be a significant problem since the decomposition process results in

aln increasingly smaller number of coefficients. Thus, a border error at the fifth level with

respect to two coefficients will result in a reconstruction error spread over 64 samples of the

original signal. Mallat suggests time border problem can be reduced by making the origi-

nal signal symnnetric with regard to the first and last samnple or in the 2D coa-s m-ake the

image symmetric with respect to the horizontal and vertical borders[23:6811. This process

eliminates the border problem completely if the filter is symmetric and the reconstruction is

accomplished with the same assumed border symmetry as in the decomposition. If the filter

is asymmetric the problem may only be alleviated by padding the image with enough extra

elements to retain the extra convolution coefficients.

4.3.5.2 ConvolutionA Methods There are two main methods of accomplishing

convolution. The first is to calculate the so called "convolution sum" using a shift multiply

and sum routine. The second is to take the Fourier Transform of the two functions, multiply

thecn point by point, and take the inverse Fourier T'raunsform. The first method is normally

considered slt)wer. It has a. time complexity of O(N2 ) assuming that the functions to be
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convolved are the same size. The Fourier Transform method used with the Fast Fourier

Transform (FFT) has a time complexity of O(NlogN). In the multiresolution algorithm, the

filters used are normally a fraction of the size of the signal or image of interest. This enables us

to reduce the time complexity of the shift multiply and sum routine to approximately O(N).

Therefore, we have chosen the shift, multiply, and sum method. However, our investigation

of the Fourier Transform method revealed some interesting points of the application at hand,

which we include for the benefit of the reader in the following section.

4.3.5.3 Numerical Recipies in C Convolution Routine The convolution routine

in Numerical Recipies in C is a function called conviv. The interface to this function requires

the response function have an odd number of values m and be stored in an array in "wrap

around order". Wrap around order as shown in Figure 4.26 requires those elements of the

response function greater than or equal to zero o0! the discrete time (sample) axis to reside

in that order in the first positions in the input response array, "respns". Those response

elements less than zero on the discrete time (sample) axis must be stored in the same order

in the last positions in the response array. If the same variable name is used more than once

to hold the response array input to convlv, it must be reset each time the procedure is called.

This is due to the fact that the response array is altered each time convlv is called. While

these are fine points in the use of the convolution routine, they must be exactly followed for

successful convolutions using Numerical Recipies in C.

4.3.5.4 Problems Encountered Using thch Khoros System All of the images used

in the decomposition analysis were co) tposed of integer grey scale values between 0 and 255.

They exist in a floating point iormat to obtain the needed accuracy in the decomposliton

and reconstruction algorithm. We. visually evaluate the results of the reconstruction with the

Khoros image processing system provided by the University of New Mexico [31]. The first

reconstructed images viewed in this system appeared to be much darker than the original

image. After analyzing the resulting floating point values of the reconstruct-d image we

discovered that zero gray scale values in the origua.l image corresponded to small negative

values in the reconstructed image. Inherent in the Khoros display system is a normalization

process which compresses the dynamic range of the rest of tihe iihiage to accommodate the

negative numbers. lo producc a more visually acceptable reconstruction, we set all values

less than zero to zero and greater than 255 to 255.
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4.3.6 Examples The Multiresolution Decomposition decomposes an image into a

lower resolution approximation and three detail signals. This process is iterated to ob-

tain successively lower, coarser, resoluticn approximations and details. This section along

with the following diagrams will demonstrate this process and provide additional insight into

the frequency content of these approximation and detail signals.

Figures 4.28-4.30 show the detail coefficients from a decomposition of an original im-

age made up of two rectangular boxes. We chose this image for its pristine vertical and

horizontal high frequency content, edges. These detail signals are thresholded and binarized

using our threshold program discussed previously. T' .,e figures illustrate the edge detection

Original Filter Function

VoV
Sample Order 0 4 8 12

Array Order 1 5 9 13 17 21 25 29

Filter In Wrap Around Order

Sa•mple Order 0 4 8 12 - 12 V

Array Order 1 5 9 13 17 21 25 29

Figure 4.26. Wrap Around Order for the C, onvlv.c Procedure

capability of multiresolutioii wavelet analysis aniid the orientation selectivity of the different

detail 6iguals. The magnitude of the F.Ast lourier rlyansforin of the wavelet, dctall coefficients
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in Figure 4.32, demonstrates how well this orientation selectivity is accomplished. The orig-

inal image, two rectangular boxes, is also shown in the figure. These plots illustrate how

the frequency content of each detail signal is localized in terms of orientation. Tile D',f

coefficients contain the horizontal high frequency information, the Djf coefficients contain

the vertical high spatial-frequency information, and the D'jf coefficients contain the higher

angular frequency information of the original image. In this figure, we arbitrarily chose

level j = -4 for documentation convenience. All levels of resolution are shown to have this

orientation selective characteristic as diagramed in Figure 3.7.

Figures 4.33-4.39 illustrate the main facets of the multiresolution decomposition and

reconstruction process. The original image, 512x512 Lenna, is given in Figure 4.33 for a com-

parison with the various results of multiresolution process. Figure 4.34 is the reconstructed

Lenna from a 5 level decomposition. The successively coarser approximations Ad, of Lenna,

are shown in Figure 4.35 on the top of the page. Notice the reduction in size as a result of

the down sampling from the original Lenna Figure 4.33 (level 0) to the first approximation
(level 1) in tihe upper left corner of Figure 4.35. The bottom of Figure 4.35 shows the series

of reconstructed approximation A' of Lenna. The final reconstruction (level 0) is found in

Figure 4.34. Tile coarsest approximation of Lenna, a 16x16 image, is shown in Figure 4.39.

This level 5 approximation along with the detail coefficients found in Figures 4.36-4.39 are

used to accomplish the reconstruction. Note that these coefficients have been thresholded

to make the orientation specific frequency content viewable.

4.4 Conclusion
T!.ic Chap.ter evaflua-tes two n...thAcs. of .... t. rz.oll ...... h 1t .It tl._-1b r , "'b" onlflly

the decomposition capability of the projection method, althotugh reconstruction is possible.

Basically, the V and 14' space projections at some arbitrary coarse level of decomposition

are added point by point. The result is then added to the 14' space projections at the

next finer level of resolution. Tris process is iterated until the finest level approximation is

reached resulting iII the fiinal reconstruction. We elected not to pursue I iOs Ieclinique due to

the computational overhead associated with the projection of every set of the decomposed

coefficienl,s onto the V' and IV spaces for addition. Instead, we chose to iniplemnent. the recon-

struction with fl' sec( nd method of multiresoilution ana.lysis deswribed in this chapter, using

Q(uadma-ture: Mi[1r01' Filters (QMF). In this imethod, the sets of scale and waNvelet coelliciemits
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Figure 4.29. Vert~ical Mult~iresolutioii Detail Coefficients ot Boxes (Reduced 25%)
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I',igture '" .34. Rteconstructed Image of Lcnna UsingT the Splinc Wavelet (Reduced 2%)
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Figure 4.3.5. M ultiresol ution Decompiiosi tiuii / ec-jiitriu ctiori Approx unation s of Leuna U~s-
inig the Cubic Sp'Iine Wavelet. (Actual Size)
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Figure 4.36. Horizontal Multiresolution Detail1 Coefficients of Lenna (Reduced 9.5%)

'I6V

F igure 4.NY. Vertica Nut, ~~tc Detaiil (Ax ffic l( iis of Lenna (RLkdwed 25%)
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F igue 4 38. Angular Multresolution Detail Coefficients of Lenna (Reduced 25%)

Figure 4.39. Coarsest Approximation of Len'a Needed for Reonstruction (Reduced 25%)

4-45



get logarithmically smaller with coarser levels of resolution. Moreover, the algorithm does

not require that the coefficients be projected at each level of resolution. For these reasons,

we use the QMF method as the tool for analyzing the data in this thesis.
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V. Experimental Application and Results

5.1 Introduction

This chapter explains the approach and methodology used to segment Synthetic Aper-

ture Radar (SAR) imagery and Forward Looking InfraRed (FLIR) using the multiresolution

approximation representation. This chapter first reviews the objectives of this thesis re-

search. Second, a description of the overall system approach is given. Third, criteria for

inultiresolution feature selection is explored. Finally, segmentation results using different

wavelets are given.

5.2 Overvicw

Thtus far, thie background of a .. ,avclet representation and the basics- of artificial ncural

networks have been explained with an emphasis on their usefulness as an analysis tool. The

purpose of this research is to use these tools to segment SAP imagery, specifically, to seg-

nment different homogeneous r-_gions (trees, flields, and shadow) from one another. The goal

in general is then to determine which set of the mnany multiresolution coefficients will provide

an adequate set of features to enable the radial basis function network to accomplish seg-

inentation. The following sections address the application of these tools to the segmentation

ltobleCi.

5,.3 Methodology

5.3.1 I•.iroduction This section Ns composed of five parts. The first part gives a

brief overview of the total segmen.tion system. 'ine secoid part explains th-e method of

sclectiing w-velet coefficients. The third padt el:p)lins the rationale for using receptive fields,

T'he fourth part explains the pro, dures for traiuiig the RI l" neural intwork. The fifth and

linal part provides ilformiatien regarding the SAL and 1, Lit iinagery.
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5.3.2 Approach The diagram in figure 5.1 represents the overall segmentation system.

The first task is to take the SAR data which is stored in 884 format and convert it to an

ascii format. This is accomplished in four steps. The first is to use rd884. c, which converts

the data from 884 data format to a raw floating point complex pair format. Second, the

program logb.c is used to convert the complex data to a raw byte image file with values

between 0 and 255. Both of these programs were supplied by Sandia Laboratories and are

included in the Appendix. The third step uses the Khoros system (provided to the Model

Based Vision Laboratory by the University of New Mexico) to convert from byte format to

IMAGES GENERATE THRES51tOLD
TO M U LTI- CEFINT
ASCII RESOLUTION

COEFFICIENTS

SELECT

LEVEL AND

RECEPTIVE
FIELD SIZE

PIHOCESS
WITH
RBF

N ETWO RK

SIMAGES

Figure 5.1. Block Diagrain of Segmenta-tion System

labeled ASCII format. The final step of stripping oil the labels is accomplished by tile the

matrixtoascii. c prograimi.

TIl' i' rlage file is theim processed by the wave2 prograli which u ilizes MaIllat's algo-
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CLASS I CLASS 2 CLASS3

ANEAR LAYERXS

WEIGHTS-,-

I I I /

APPROXIMATION IMAGE

Figure 5.2. Segninentat, ioi System Architecture
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Level Detail Signal I Approximation Signal Smallest Detectable
Cycles/Object 11 Cycles/Object Change

0 N/A 9-1024 1 foot
1 1024-512 0-512 2 feet
2 512-256 0-256 4 feet
3 256-128 0-128 8 feet
4 128-64 0-64 16 feet
5 64-32 0-32 32 feet
6 32-16 0-16 64 feet
7 16-8 0-8 128 feet
8 8-4 C-4 256 feet
9 4-2 0-2 512 feet
10 2-1 0-1 1024 feet

Figure 5.3. Frequency Content of Multiresolution Levels

rithm. Details of the wave2 program can be found in the Appendix. One of the resulting

wavelet coefficient files (note that these files are formatted as if they were each an image) is

selected based on the size and frequency content of the objects or regions to be segmented.

The file which is selected is then partitioned into small overlapping receptive fields centered

about one coefficient value. Initially a small subset of the image is used to train the network

on the different regions. Following network training the entire image is fed through the

artificial neural network and each coefficient is classified as a. particular type of region and is

given a particular gray scale value. The resulting segmented image can then be viewed, using

Khoros, for comparison with the original image. A diagram of the total system architecture

in shown in Figures 5.1 and 5.2.

5.3.3 Selection of Wavehel Coefficients The multiresolution representation, -is devel-

oped in Chapters 3 and 4, can be viewed as filtering an image with a set of low pass filters

with successively narrower bandwidths. The information lost due to this smoothing pvocess

is retained in the detail signal. This process of approximation will result in a set of succes-

sively lower resolution representations of the original image. Figure 5.3 shows the frequency

content of the various resolution levels which correspond to a 2048X2048 original image. The
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Figure 5.6. Comparison of The Spline (solid) and Daubechies (dots) H Filters

highest possible frequency in a 2048X2048 image is 1024 cycles/object which corresponds

to an object which is 2 feet (2 pixels) wide. This correlation of pixel size to the actual size

of an object is possible due to the use of SAR imagery. Because Lhe effective view of SAR

imagery is a "God's eye view", and the camera angle or soiirce angle doesn't create a skewed

view, the density of pixels per area is constant. For example, normally a camera produces

pictures with -a nun-uni 0ui uj..uy r) U 4ct.al area U-- a scene 0Whoe pixeis WhIcu

correspond to near cbjects in the scene cover less area than those pixels which correspond

to objects further away. One pixcl might correspond to 1 foot by 1 foot resolution of the

scene for near objects, while another pixels may correspond to a 10 foot by 10 foot area. for

objects furcher away in the scene. These non-uniform density of pixels to area effects ar'

not found in SAR imagery.

The assignment of cycles/object to a particular level is a direct result of the filtering

process and the down sampling required by Mallat's a.lgorithm. Figures 5.4 and 5.5 show

the roll-off of various Daubechies H filters which represent the use of different wavelet basis

sets. Figure 5.6 compares the roll-off of a Daubechies- I H filters with that of Mallat's cubic
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Lovel Image Dimension Total Number of Elements
0 2048X2048 4194304
1 1024X1024 t0,48576
2 512X512 262144
3 256X256 65536
4 128X128 16384

5 64X64 4096
6 32X32 1024
7 16X16 256
8 K18 64
9 4X4 8
10 2X2 4 4

Figure 5.7. Dimension of Coefficient Files a Different Levels

spline H filter. Note that the higher the order of the Daubechies H filter, the more rapie

the roli-off, but ,he bandwidth of the filter remains nearly constant. Figure 5.8 shows the

Changing band widths of the same filter with the down sampling. These lower ,esolution

approximations also contain only one-fourth as many coefficient values as the previous level.

Figure 5.7 shows the reduced number of approximation coefficients.

The result of this process is to suppress objects in an image which have higher frequency

content (smaller objects or edges) at tach lower resolution level.

5.3.-4 Choosing The Receptive Field Size Once a particular level has been selected,

features, for the racial basis network must be chosen. The overlapping receptive field or

window mentioned in the previous scction dictates the number of features used to classify

a single coefficient vah, c. This can be seen in Figure 5.9 which represents a distribution of

wavelet coefficients of some image at an arbitrary level. The center value in the 3X3 receptive

field is what the ,1etwork is attempting 1o classify. It may be impossible to distinguish

betwecn classes based on one coefficient value as would be the case for any of the small

white blocks in Figure 5.). If we utilize the 8 nearest neighboring coefficient values, of any

paiticula.r coefIicien, value, it becomes clearer as to which class each individual coefficient
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Figure 5.8. Filter Band Widths With Down Sampling

belongs. This method does has difficulty classifying blocks near the dashed boundary line

in Figure 5.9 which is between the two different types of regions. If we reduce the size of

the receptive field to take care of the boundary problem weý reduce our ability to distinguish

mnembers of the hom-ogeneous classes. The Multiresolution Representation may have the

needed information to deal wi~h this problem.

Depnd-ringr on OUr ,-•~ri;,11! -AJ ,, ,f I,ý%im¢ tha 1k41d;r~e,,%hifnn PA...... *it.t;r. ..

provide levels of greater detail of these ambiguous rf,-gions. For ex-imple, the segmentation of

the homogeneous regions (tree, field, and shadow) were done at level 4 using a 3X3 receptive

field. The 3X3 receptive field contains 9 coefficienl:L or in other words generates 9 features

for each coefficient value. Each coefficient value at level 4 is represented at level 3 (a higher

resolution representation) by four- coefficient values and at level 2 by eight coefficient values.

These additional levels of detail may be u~seful in defining more accurately the bounding edge

between adjacent regions. The limitation on the nuirmber of training vectors did not allow for

explicit testin~g of this theory while segmenating ýhe homogeneous regions, but higher lcveks

of resolution were utilized in segmenting t he roads from the SAR imagery.
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Figure 5.9. R-.;ej eve Field Sizes For Segmentation

5.3.5 Data For Tir~i-ing The Radial Basis Function Network 'Ihe neural network

classifier iL trained by presenting to it samples of classified data known as tr uth data. Once

this training process is completed, the network then attempts t.0 classify or categorize any

presented data into one of the previously learned classes. This subsection discusses the total

amiount of training data which can be used and its relationship to the number of training

samples_ the number of features per sample, and the number of classes. The spec-ific learning

algorithum- used by the RBF network can be found in [37].

There are two main rules-of-thumb known as Foley's Rule and Cover's Rule. Foley's

Rule deals with the relationship between the number of features per training vector and the

number of total training vectors. There should be at least three times as many training

vectors per class as there are features per vector. Thus a 3X3 receptive field would have

nine featires per vector requiring at least 27 tramnpng vectors ofr class. Cover's Rule states
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that if the total number of training vectors for a two class problem is less than two times the

number of features, the error rate on the train set will always be very nearly zero with-out

regard for the distribution of data [32:60]. This indicates that training results (percent error)

on a sparse set of training data will not necessarily reflect the result of the test data. The

network will "memorize" the training data but generalization to the test data will be poor.

The RBF neural network used in this research is constrained to having no more than

200 training vectors. Each of the vectors may contain up to 100 components or features

[36]. Nearly all of the training was done to meet or exceed the rules given above to provide

a network classifier capable of robust generalization.

5.3.6 Imagery

5.3.6.1 Synthetic Aperture Radar Imagery The 1 foot by 1 foot resolution SAR

imagery data ise~d in thig req..a.rch waq s.nlipied hv M!T!Linron LI .nrathories via the Model

Based Vision Laboratory at Wright Patterson AFB. Although the full polarimetric data. was

available, only the horizontal/horizontal polarization was used. Mission 85 is almost entirely

composed of regions of trees, field, and shadow. All of the SAR imagery was histogram

normalized before processing and display.

"* mission 85, pass 5, frame 30 (m85p5f3Ohh)

"* mission 85, pass 5, frame 29 (m85p5f29hh)

"* mission 85, pass 5, frame 28 (m85p5f28hh)

"* mission 85, pass 5, frame 27 (m85p5f27hh) A

5.3.6.2 Forward Looking Infrared Imagery The FLIR data. used in this thesis

was provided via the Model Based Vision Laboratory by Texas Instruments (TI) Corp. The

data is a series of high-resolution, 8-bit, FLIR images. The collection of data involved moving I
and statiouary targets during both day and night. All of the imagery was taken from a height

of approximately 1000 feet along a previously defined flight vector [12:1].
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5.4 Segmentatiun of Homogeneous Regions

5.4.1 Selection of Wevele. Coefficients Recalling that we wa... to segment the tree,

field, and shadow regions shown in Figure 5.11 from one another, it is necessary to find

the frequency content of thle field and trees. The first analysis is to simply look at the

inultiresolution approximations of thle the SAR imagery and notice any obvious differences

between the fields, trees, and shadow at a particular level. Figure 5. 11 is a section of mission

85 with laege sections of trees, field and shadow. Figure 5.12 shows the approximation from

levels 1 through 4. It is easily seen that the level 4 representation (smaflest) of the image had

a greater visual contrast between the field and trees than any other level. The next step is

to investigate the frequency contefit of the tree and field regions. This can be accomplished

by taking the Fourier transform of a small area of trees and a small area field. In Figure

5.10 both magnitude plots look some what similar. If we ignore the DC component (cenner

spike), tle only significant difference is that the trees have more energy concentrated at the

center of the frequency plane (lower frequencies) than do the field. These lower frequencies
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ýare between 1 and 2 cycles/object taken from a 64X64 image sample. This indicates the

size of the tree clusters to be between 32 and 64 feet long. This reinforces the previous

observation that the level 4 approximation would provide a good set of features.

MI

aI

INI

Figure 5.12. 512X512 SAR Imagery Multiresolutio-) Approximations Using The Cubic
Spline Wavelet (Actual Size)

5.4.2 Results A small subsection of mission 85 is shown at full scale, 72 pixels per

inch, along with the segmentation results in Figure 5.13. Figure 5.14 is a reduced version of

the entire 2048X2048 mission 85 and will be the baseline for comparison with the following

images scgmented using different wavelets. The correctness of the segmentation is some-

what arbitrary. That is to say, if 10 peop)le were to segiient m85 by hand there would be

10 different results and all of the 10 would be correct. Additionally, if a tactical planner

where to hand segment mission 85 he or she might segment it very differently than the 10

test cases. It is more appropriate in these expirernental results to let the reader judge from

his perspective if the results are useful for his purposes. Figures 5.15, 5.16, 5.17, and 5.18

5-13



Figure 5.13. Homogeneous Regions of Interest and Their Segmentation (Actual Size)
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show the segmentation of homogeneous regions as accomplished by the spine wavelet and

Daubechies 2, 3, and 6 respectively. Notice in Figure 5.15 small regions of trees throughout

the image are identified and segmented as trees. This is are the case of the other three

segmentations. Because the filter characteristic of the Cubic Spline and the Daubechies

wavelets are very similar, it is not surprising that the resulting segmentations are also similar.
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Figure 5.14. Entire Mission 85 2048X2048 SAR Irniage at 1/16 scale
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Figure 5.15. Spline Wavelet Segmentation Of Mission 85 SAR. Image at 1/16 scale
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Figure 5.18. Daubechles 6 Wavelet Segmentation Of Mission 85 SAt Image at 1/16 scale
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5.5 Segmentation of Roads

5.5.1 Selection of Wavelet Coefficients and Receptive Field Size The segmentation

of roads utilizing the RBF network was done in the same manner as the segmentation of the

homogeneous regions differing only in the approximation level and receptive field size. The

section of SAR imagery used to segment roads ,Figure 5.19, came from the upper left hand

corner mission 85 (see figure 5.14). The width of the road was measured to be between 8

and 12 feet across. This indicates the the first level approximation coefficients can provide

a good set of features to accomplish the segmentation. The first attempt at segmentation

done using a 3X3 receptive field. This resulted in finding two distinct edges instead of a solid

road. The next attempt was done using a 5X5 receptive field. Using a 5X5 receptive did not

provide a perfect segmentation but it was able to segment the road as single object rather

than two edge;. To provide better results some median filtering was done on the segmented

road imnage. Median filtering is done by rnuving a window along the image and replacing

the pixel which is being processed with the average pixel value in the window. This process

eliminates somne' types of noise, but preserves edge information.

5.5.2 Results Figure 5.19 is the original section of the image without any scaling.

Figure 5.20 shows the segmentation done by the radial basis function network using features

from level 1. Figure 5.21 is the same segmentation after a median filter was passed over it.

The road is admittedly slimmer but stands out as a distinct object.
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Figure 5.19. Section of M85 With Roads at Full Scale

Figure 5.20. Segmentation of Roads from M85
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Figure 5.21. Segmentation of Roads Using A 1X3 Median Filter
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1I

Figure 5.22. FLIR Imagery Multiresolution Approximations Using The Cubic Spline
VWaveiet (Actual Size)

5.6 Segmentation of Man Made Objects in FUIR Imagery

5.6.1 Selection of Wavelet Coefficients The segmentation of the FLIR imagery uti.iz-

ing the RBF network was don.ý in the same manner as the segmentation of the homogeneous

regions and the roads differing only in the approximation level and receptive field size. The

selection of which wavelet. coefficient set to use in segmenting smaller man m-ade objects

out of an image is a more complicated decision than choosing a set for large homogeneous

regions. The decision depends on the size of the features chosen. For example, one could

choose to use an entire tank as a. feature. This would reqluire a, large. enough receptive field

to cover the ent~ire tank. An alternative approach would use smaller portions of the tank as

features. This choice would require a receptive field the size of track wheels or perhaps the

size of the engiie housing. The correct set of approximation coefficient~s would then be the

set wvhich contains information of at. least the size of the features of interest. I chose to use

smaller portions of the tai for i"y features. The size of the features then drov- the decision

5-21



2

to use the set of level 1 approximation coefficients (see Figure 5.22). A 3X3 receptive field

was large enough to extract the features of interest.

5.7 Results

The results of the segmentation process are shown for six FLIR images along side the

original images in Figures 5.23, 5.24, and 5.25. Each of FLIR images contains a tank at

different ranges at the center of image. Since range data is available and the size of an

object of interest can be determined at a particular range, a less than perfect segmentation

such as Figure 5.24 can be useful.

i4

Figure 5.23. FLIR Segmentation at Range 1170 and 1230 Yards
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Figure 5.24. FLIR Segmentation at Range 1290 and 1360 Yards

Figure 5.25. FLIR Segmentation at Range 1430 and 1480 Yards
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5.8 Conclusions

Segmentation, feature extraction, and classification are the three primary tasks which

encompass the pattern recognition process. These task are in general very difficult to accom-

plish and require large amounts of time and computer processing. In an attempt to provide

new approaches to processing and to improve our ability to autonomously recognize patterns,

research into biological visual systems has been pursued. This biologically based research

has suggested that visual perception is constructed from small pieces of the whole with each

small piece having information regarding the frequency content of a small region of the entire

image. This approach has been used successfully to segment natural and man-made regions ]
in both SAR and FUR imagery.

The predominant tool used in image analysis to generate spatial-frequency representa-

tion of images has been the 2D Windowed Fourier Transform. It provides a representation

oiMae in t he sprace do ; cailfeuecdxanMoee, eac o rnfr

utilizes constant sized windows; it obtains a constant resolution in space. A new analysis

tool, the Wavelet Transform, provides an alternative by using multiple sized windows. These

multiple sized windows trade resolution in space for resolution in spatial-frequency. These

space/spatial-frequency representation of small regions of the image have been processed by

a Radial Basis Function (RBF) artificial neural network to determine the difference between

natural homogeneous regions (trees, fields, and shadow) and man-made objects (tanks and

roads).

The Multiresolution Decomposition provides a representation of both SAR and FLIR

imagery which shows similarities in homogeneous regions and provides features for segmenta.-

tion. The level four approximation coefficients can accurately segment trees from fields. This

is clearly seen in Figures 5.15,5.16, 5.17 and 5.18 which show the segmentation of naturally

occurring homogeneous regions. The higher resolution approximations provided adequate

features to segment man made objects. The dirt roads found iii the SAR imagery (Figure

5.21) and the tanks found in the FLIR imagery (5.23,5.24, and 5.25) were segmented from

the surrounding clutter.
J
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5.9 Summary

The various sets of coefficients which constitute the wavelet representation from a

multiresolution analysis provide a broad enough representation to segment both natural and

man made objects of varying size from surrounding clutter in both SAR and FLIR imagery.
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VL. Conclusions and Recommendations

6.1 Introduction

This thesis research investigated the use of wavelets and artificial neural networks to

segment high resolution Synthetic Aperture Radar (SAR) and Forward Looking InfraRed

(FLIR) imagery. The specific objective was to find a reliable method to segment or separate

naturally occurring regions such as tree, fields, and shadows as well as man-made objects

such as tanks and roads.

d.2 Major Findings

The objective of this thesis research was to answer six questions.

* I-low is the Wavelet transform related to other types of signal or image analysis tools?

"* How is the Multiresolution Representation obtained or calculated for a signal or image?

"* Do the multiresolution coefficients provide values which can be used to separate natural

and man-made regions within both SAR and FLIR imagery?

"* Which set of coefficients should be used as the features?

"* Can the Radial Basis Function (RBF) artificial neural network be trained to au-

tonomously segment SAR and FLIR imagery using the wavelet coefficients as features?

"* Will the RBF neural network segmentation using the multiresolution coefficients as

features, generalize to all areas of an image? If so, will it also generalize to additional

image3 not used in network training?

The results of this thesis research have provided a basis for answering the above ques-

tions.

* The Wavelet transform trades resolution iii space for resolution in spatial/frequency in

its analysis of images. This concept and the mathematical basis for wavelet analysis

arc fully explained in a tutorial manner in Chapter 3.
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"* There are various methods of generating a multiresolution representation1. Chapter 4

explains two methods of producing this representation. Additionally, the Appendix of

this document contains the code to accomplish a Wavelet transform.

"* The multiresolution approximation coefficients were sufficiently different for both natu-

ral regions and man-made objects to accomplish a rudimentary segmentation. Prelim-

inary tests produced segmentation of regions and objects using standard thresholdii.g

techniques.

"* The approximation coefficients proved to be more useful than the detail coefficients.

The different naturally occurring regions in SAR imagery contained multiple orienta-

tions and the three orientations of the detail could not be used directly as a means of

separating regions. The bandwidths of the various levels of the approximation coeffi-

cients provided the decisive element in region segmentation.

"* The Radial Basis Function artificial neural network provided a tool which could seg- I
ment both natural regions and man-made object from surrounding regions and clutter

in SAR and FLIR imagery using multiresolution approximation coefficients as features.

"* The RBF network was able to generalize to different geographical regions of SAR.

imagery and to different FLIR images within a series of images of the same object at

different ranges.

Additionally, this thesis has provides an excellent introduction and analysis of the

multiresolution mathematics and a system to generate the multiresolution representations.

6.3 Recommendations

There are some additional areas for further research regarding the multiresolution

representation of imagery and its utility in the pattern recognition process. The RBF network

is another area where further study can yield benefits. The following suggestion are made

with these two areas in mind.
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" The small number of training vectors in Zahirniak's RBF network was a limiting factor

on the size of receptive fields which were used. An RBF network without this training

vector limitation could provide for using larger receptive fields.

"* The Boundary Contour System using detail coefficient as proposed by J. S. Laing in his

thesis [19] could provide a means of better segmentation of roads and other man-made

objects SAR and FUR imagery.

"* The design of a system which would use both the detail coefficients and the approxima-

tion coefficients could provide a means of using both the similarity and discontinuity

approaches simultaneously in image segmentation.

"* The wavelet representation. of image data should be applied to the task of classification

or categorization of man-made objects.

6.4 Summary

The ultimate aim of this resear :h was obtained. The wavelet representation of image

data is useful for segmentation. The wavelet coefficients should also be explored for their

application to other tasks in the pattern recognition process.
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Appendix A. Multiresolution Analysis Using Projections

A.1 Systtm Description of the WAVE Program

The following is a list of functicn-,,s wh;ch comprise the wave program:

1. main-wa e.c - The main driver program for wave.

2. loadimage.c - A routine to load the include image from an ascii data file.

3. phi.gen-haar .c - A rou-t'"e that builds a new 4D for each level of the detumposition.

4. inner-prod.c - A routine to perform the inner product and obtains the $ coefficients.

It generates one file for each level of decompositioi t with the suffix . phicoef..

5. v-proj ect ion. c - A routine that finds the projection of the include image on the space

1V& where m is the current level of decomposition. It generates one file for each level

of decomposition with the suffix .vproj ect..

6. w.proiection.c - A routine that finds the projection of the incl de image onto the

space Wm orthogonal to the V,, space where m is the current level of decompostion.

It generates one file for each level of decomposition with the suffix .w-proj ect..

7. makefile - A makefile that is used to compile and link the source code to make an

executable file.

8. i smacros .h- An include file that contains macros we found useful in our programming

environment. This file must be present in the directory where compilation takes place

(See Appendix Fi for listing).

9. macros. h- An include file th,•, we borrowed from G. Tarr. It contains addition macros

used throughout our code. It also must be present in Lhe directory whera the compi-

lation takes place (See Appendix F.1 for listing).

10. stewmatlh.h - An include file containing some math routines specific to our program.

It must be present in the directory where conmplilation takes place (Sec Apperdix F.2

for listing).
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Typing "make" at the command prompt in any directory with all of the above files present

will create the appropriate object code and an executable file called wave that may be exe-

cuted by typing "wave" at the command prompt.

A.2 Haar Wavelet Analysis Software

A.2.1 Listing of MAIN-WAVEC

WAVELET ANALYZER MAIN PROGRAM DRIVER

/* DATE: 09 April 91/* */
/* VERSION: 1.0

/I NAME: main-wave.c

/* DESCRIPTION: This program performs a multiresoluti ýn wavelet analysis */
/* of an input image with a wavelet from its internal library chosen "/
/ .. byLI.Utt... V.... u.BV . It .. alCA .lVO Ii& Wu.u.. l1t. A-ac L t/lu
/* us•ti and drives the subroutines that take inputs, analyzes, and */
/* prgt•,ces output. Currently only the Haar Wavelet is available for this */
/* program./* */
/* FILES READ: NONE/* *

/* FILES WRITTEN: NONE/* */
/* HEADERS USED: <stdio.h>, "macros.h", "jsmacros.h" */

/* CALLING PROGRAMS: NONE *//* *
/* PROGRAMS CALLED: imageload.c, innerprod.c, phitgen-haar.c, */
/* phitgen-pl.c, vproj., c proi.c
/,, */
/* AUTHOR: Steve Smiley and J. Stewart Laing
/* *
/* HISY'ORY: Initial Version; adapted from phivl.c and haarvl.c */

/* DECLARATION SECTION */

#include <stdio, h>
#include "macros .h'
#include "jsmacros, '"
#include "stewmath. h"

int-array loadima~ geo;
float array phitgen-haar()i;
int-array inner-prodo;
lnt array v.projectioO( ;
int-array w.projecticn(;
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/* MAIN PROGRAM BODY */

void main(argc, argv)
int argc;
char sargv[];

/* initialize variables */

int i. uavelet-type, level, maxlevel;
int.array image, phi-coef, v-image, lastvjimage, w.image;
float-array phi;
char filename[64), load;

/* load image to be analyzed

if(argc != 4 &k argc != I){
printf("Usage: wave <filename> 0# of Rows> <# of Cols>\n");
exit(O);

}
image = loadimage(filename, argc, argv);
maxlevel = LOG2(image.ROW);

/* This section performs the wavelet*/
/* analysis on the image according */
/' to tlv value 01 vavelet_type. */

loopi(maxlevel){

/* generate phi for haar

phi = phi-gen-haar(i);

printfC"\n Level %d phi generated.\n", i);

/* perform inner product to get phi coeaicients /_

phiscoef = innerprod(image, phi. i. filename);
printf(!"\n I have created and strored the Level %d", i);
print!C" inner-product coeficients.An");

/* generate V space projections */

lastv-image = v.image;
v-image = vtprojection(iniage, phi, phi_coef, i, filename);
printf("\n I have created and stored tht Level 4d", i);
prixtf(" V projection.\n", level);

/i generate W space projections */

if (i == 1) wvimage = w-projection(image, vjimage, i, filename);_
if (i > 1) w_image = wvprojection.Clastv image, vjimage,

filename);

/* THE END */
A
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A.2.2 Listing of LOADIMAGE.C

WAVELET ANALYZER LOADINAGE ROUTINE *4/

/* DATE: 10 April 91 4/
1" */

/* VERSION: 1.0

/* NAME: loadimage.c
/* ,/

/* DESCRIPTION: This routine loads an image into an array whose name is */
/* specified by the user interactively. It is intended to be used as a */
/* subroutine fo:: the WAVELET ANALYZER PROGRAM. *1

/* FILES READ: One file specified by the user.
/* *

/* FILES WRITTEN: NONE/* *

/* HEADERS USED: <stdioh>, "macros.h", <stdlib.h>, "jlmacros.h" *//* *

/* CALLING PROGRAMS: main-uave.c 4//*4*

/* PROCRAMS CALLED: NONE

/* AUTHOR: Steve Smiley and J. Stewart LaingI* */
/* HISTORY: Initial Version/4 *

/* DECLARATION SECTION */

#include <stdlib.h>
#include <stdio.h>
#include "macros.h"
#include "jsmacros.h"

/* FUNCTION BODY

int-array loadimage(infilename, argc. argv)
char *infilename[64);
int argc;
char *argv[];{

/* initialize variables 4/

int i,j;
FILE *infile;
int..array image;

/* create array to hold the incoming image */

if(argc == Of
printf("\n\n\n Input the size of the image (ROW COLUMN):>");
scanf("Xd %d", &image.ROW, &image.COL)-;
printf(" \n\n Input filename of image to be analyzed:>");
scanf("'s", infilename);

}
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else {
sprintf(infilename, "Us", argv[i3);
secanf (argv [2), "4d", &image.ROW);

secanf (argv [3), "%d", &image.COL);
}
CREATENATRIXROW(image.array, image.ROW, int);
CREATEMATRILCOL(image.array, image. ROW, image .COL, jut);

/* load image to be analyzed */

OPEN-FILE (iatile, iniilename, "The wavelet analyzer");
loopij(image.ROW, image.COL){

fscanf(infile,"%d", &image.array[i][j]);}
printf("\n *4 The image %s has been loaded for processing, $*\n\n\n",

infilename);
return image;

A.2.3 Listing of PHIGEN.HAAR.C

WAVELET ANALYZER ROUTINE TO GENZRATE THE PHI FOR HAAR

i* DATE: 1i Apri *9
/* */

/v VERSION: 1.0 *//4 */ 1
/* NAME: phi-gen.haar.c

/* DESCRIPTION: This routine generateL the phi function for a particular */
/* level of resolution. It is represented ab an array whose size depends 4/
/* on the level requested by the calling function. I/

/* FILES READ: NONE */

/* FILES WRITTEN: NONE 4//* */
/* HEADERS USED: <stdio.h>, "macros.h". <stdlib.h>. "ilmacros.h" i/

/* CALLING PROGRAMS: main-wavec 5//* *1
/* PROGRAMS CALLED: NONE

/* AUTHOR: Steve Smiley and 3. Stewart Laing
/5 */
/* HISTORY: Initial Version 5/

/* 4/

/t*t*ttttt*t$$$$$tttt•$$$$•€**tt**ttt***t€t***tt*****5t***t***t******t****t$/

/* DECLARATION SECTION */
/#icld *55 5*5l*4**5 5**4 /

#include <stdlib.h>
#include "macros.h>
#include "jsmacros.h"

/* FUNCTION BODY 5/
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tloatsrray phi-genjhaar(level)
int level;

/w initialize variables */

int ij, phisize;
fl.at-array phi;

/* create array to hold phi

phisize = 1;
for(i=O; i < level; ++i) phisize *= 2;
phi.ROW = phisize;
phi.COL = phisize;
CREATENATRIXLROW(phi.array, phi.ROW, float);
CREATEMATRIXLCOL(phi.array, phi.ROW, phi.COL, float);

/* build phi 4/

loopij(phi.ROWphi.COL) phi.array[i][j] = i.O/(float)phisize;
return phi;}

A.2.4 Listing of INNERPROD.C

/•*a'a ROUTINE TO PERFORM INNER PRODUCT FOR WAVELET ANALYZER *****/

/* DUE: 11 April 91 4/
/* */

/* VERSIOL: 1.0

/* ILAP5: inner.prod.c

/* DESCRIPTION: This routine performs the inner product between the phi ./
/* and the t4.nage at any valid level as requested by the caller. 4/

/* It ir interded as a subroutine for the WAVELET ANALYZER PROGRAM. '4
411f

/* 51IP', WtRTTEN: L file will be generated each time the 4/

ti- rriut-v% is called. ihe name of the file will depend on the input
.-iag.o filename, the type of vavelet used, and the level of resolution. 4/

/* HEADSRS <D: cstdio.h>, "macrosh", <stdlib.h>, "jlmacros.h", al
<string.h>

/* CALL:NG PROGRAMS: main-wave.c 4/

/* EYiG.RANS CALLED: NONE 4//* */

/* .Hk Strove Smiley and J. Stewart Laing 4/

/* Hr/
/* HISTORY: Initial Version ./
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/~DEC12, "~TION SECTION *

#includo <stduib.h>
ftnc ude <stdio .h
*include "macros.h"
*iacude "jamacros .h"

#includo <string.h>

/* FUNCTION BODY

int.-array inner..prod(imase. phi, level, filename)
int-array image;
float-.array hi;
jut evel;
char I ilename[84);

iut i, j, phisize;
iut-.anýay phi-coef;
FILE *outf ±1.;
char cost! us [64);
float product;

/* create a matrix to hold the phi cool icients *

phisize =1
lor(i=O; i < level; *+i) phimize *= 2;
phi-coef.ROW = image.ROW/phisize;
phi-coof.COL = image.CULfphisize;
CRFATE-..ATRIX-ROW(phi-coef. array. phiscoef .ROW, jut);
CREAziE..NATRIL-COL(pht-coof .array, phiscoef .ROV, pht-coef .CL, int);-
/*printfC"\nphi,.coef matrix sucessfullly created.\n") ; *

/* perform inner product <image, phi> to get coot icients *

loopi j(image. ROW, image. COL) {
produict =phi. array [i~phisizeJ (j%phisize) * (f loat) image. array[iJ [j];
ph-i...coat.array~i/phisizelJ L/phisize) += (int)product;-

/1aritýý the phi ----4 ý4-4et-4. 4; .

sprintlý'coef tile. "Xe .phicoet .X1'. filename, level);
CREATEJFILE(outt ilo, cool file, "WAVELET ANALYZER')

loopij(phi-.coef.ROW~phiscoef .ca,)
lprint! (out! ile, "Yd\n", phi-coef .array Li) i));

pri.nt!("Vip The level Xcd phi-coeficieuts have been stored in a I ilo",level);
printf(" called: Xs\n". cacti ile);
return phisccu!;

A.2.5 Listing of 1KPROJECTJON.C

I..ROUTINS' TO PERFORM THE V-PROJECTION FOR WAVELET ANALYZER

/* DATE: 15 April 91
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/* VERSION: 1.0

/* NAME: v-projection.c

/* DESCRIPTION: This routine performs the inner product between the phi */
/* and phi coeticient of the image at any valid level as requested by */
/* the caller.
/* It is intended as a subroutine for the WAVELET ANALYZER PROGRAM. *1

/* FILES READ: NONE.

/* FILES WRITTEN: A file will be generated each time the routine is */
/* routine is called. The name of the file will dbpend on the input */
/* mage filename, the type of wavelet used, and the level of resolution. 4/

/* */
/* HEADERS USED: <stdio.h>, "macros.h", <stdlibh>, 'jlmacros.h",

<string.h> 4//* *
/$ CALLING PROGRAMS; main-wave.c s/

/* PROGRAMS CALLED: NONE

/* AUTHOR: Steve Smiley and J. Stewart Laing */

/* HISTORY: Initial Version *//1. s*/

I* DECLARATION SECTION *I

#4nclude <stdlib.h>
#nclude <stdio.h>
flnclude "apacros.b"
#include "jsmacros .h"
#include <string.h>
#include <math.h>

/* FUNCTION BODY s/f.* * *si.***** * *4.* *si 4.1*

int.array v-projection(image, phi, phi-coet, level, filename)
int.array image, phi.coef;
float-array phi;
char filename [64]

intarray v-imase;
int i, j, phisize;
FILE 4outfile;
char vprojfile[64];

v.image.ROV = image.ROW;
v_image.COL = image.COL;

CREATEmMATRIXROW(vimagc.array, vjimage.ROW, int);
CREATEMATRIXCOL(v.image.array, v.image.ROW, v.image.COL, int);

phisize = (int)pov(2.0, (double)level);

printf("The phisize is %d\n", phisize);

sprintf(vprojfile, "'s.v-project.%d", filenpme, level);

CREATEFILE(outlile, vprojfile, "WAVELET ANALYZER")

loopij(v.imago.ROW,vjimage.COIj{
v.image.array[i)[j] = (int)((phi.array[i'phisize)[jphisizej)*
((float)phi-coef.array[i/phisize][j/phisizej));
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fprint-4(ontfile,"7.d\n", v-image.array~i][j],N; '-

/*•***********4*3. i**'v*******•,***********************/

/* write the v prt-ection array out to a file

printf("\n The level %d V projections have been stored in a file",level);
prinat(" called: %s\n", "projfile);
return v.image;

A.2.6 Listing of WYPROJECTION.C

/*** ROUTINE TO PERFORM THE WPROJECTION FOR WAVELET ANALYZER

/* DATE: 15 April 91/* */

/* VERSION: 1.0I* *
/* NAME: wprojection.c */

/* DESCRIPTION: This routine calculates the W space projections ly */
/* performing 6 point for point subtraction with the two adjacent */
/* U -pa-e --- atr~ T+ - 4o rnlwnn44..- 4-',,.

/* WAVELET ANALYZER PROGRAM. '/

/* FILES READ: NONE. */

/* FILES WRITTEN: A file will be generated each time tht routine is 4/
/* routine is called. The name of the file will depend on the input
/* image filename, the type of wavelet used, and the level of resolution. */

/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h", *1
<string.h>/* */

/* CALLING PROGRAMS: main-wave.c *//* ,/
/* PROGRAMS CALLED: NONE */

/* AUTHOR: Steve Smiley and J. Stewart Laing 4//* ,/
/* HISTORY: Initial Version 4//* */

/* DECLARATION SECTION */

#include <utdlib.h>
*include <ntdio.h>
$include "macros.h"
#include "jsmacros.h"
#include <string.h>
#include <math.h>

/* FUNCTION BODY -//*4************4*4*****4/*
int array wcprojection(].astvtimage, v.image, level, filename'

int-array lastvjimage, vjimage;

A-9



int level;
char f ilename (64);

int.array w-ima~ge;
jut i. j, phisize;
FILE *outf lie;
char vprojf ii (64);

w..image.ROW = v..image.ROW;
w-image.COL = v-image.COL;

CREATE-IATftIX-ROW~w-image. array, wjimage.AROW, jut);
CREATE...ATRIL-COL(W...image. array, w..image.-ROW, w..Amage.COL., jut);I
sprintf(wprojfilie, "%s .w-project .%d', filename, level);
CREATE-.FILE(outfile, wprojlile. "WAVELET ANALYZER")

lc.opij (tcimageitOW.w.Amage.COL){
w..Amage. arrLq Li]) =i lastv-image .arrayLi) Lj) - v- image . array [ii Eji;

/* w-.image.array~i] Li) += 26S;
w..image.array~i) Lj) /= 2;*/

/* write the w projection array out to a file

Iprintf~outfile,"%d\n", w..image. arrayLi) Li));

printfC"\n The level %d V projections have been stored in a I ile',level);
printft?' called: %s\n". wprojfilie);

return w..image;

A.2. Litin of SMAROSIf See ppedixF.1

A.2.8 Listing of SMACR08.11 (See Appendix F.1)

A.2.9 Listing of STE WMATH.H (See Appendix F.l)

A.2.1O Listing of MAKEFILE

#Makef ile routine f or the WAVE program by Laing and Smiley.

UBJS =main-wave.o loadimage-o pht-gen-iaar.o inner..prod.o \
v..projection. 0 w-projection.o

wave: SCOBIS)
*echo "linking .'
cc $COBJS) -o wave -ln
main-wave .o: main-wave. c
cc -C main-wave.c

l~oadimage.o: loadinage . c
cc -c loadimage.c

phi-gen..haar .0: phi..gen..haar. c
cc -c phL-gen-iaar .c

inner..prod. o: inner..prod. c
cc -c inner..prod.c

v-projection.o: v-.projectioi. c
cc -c v..projection~c
w-.projection.o: w..projection. c
cc -c w..projection.c
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Appendix B. Multiresolutionr Analysis Using Filters

B.I 2D System Description

The following is a list of functions which comprise the wave2 program.

1. mainswave.c - The main driver program for wave.

2. loadimage.c - A routine to load the input image from an ascii data file.

3. decornpose.c - A routine that controls the decomposition.

4. reconstruct. c - A routine that controls tlhe reconstruction.

5. filtlers. c - A routine that provides the coefficient values of the h(n) and g(n) response

functions.

6. convolve. c - A routine that controls the convolutions for decomposition.

7. reconvolve. c - A routine that controls the convolutions for reconstruction.

8. spconvlv. c - A routine that performs the spatial convolutions.

9. makefile - A makefile that is used to compile and link the source code to make an

executable file.

--- -- J A-~tt- :rO -ad LiA WCIj- I tI 91i- u- LC L t-sz1j~ xxatu rvt lu~ i USCL41 Il U JU Ia~i~lr

environment. This file nmust be present in the directory where compilation takes place

(See Appendix F.2 for listing).

11. stewmath. h - An include file containing some math routines specific to our program.

It must be present in the directory where complilation takes placi, (See Appendix F.2

for listing).

12. nrutil .c - Source code that contains utility macros for dynamic memory allocation

(See Appendix F.2 for listing).
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Typing "make" at the command prompt in any directory with all of the above files present

will create the appropriate object code and an executable file called wave2 that may be

executed by typing "wave2" at the command piompt.

The intended input to the program is a 2D image in raw ascii format in which each

sample of the image is stored in a file, one number per line. For example, an image that is

512x512 samples will consist of 262,144 lines each with one decimal integer number repre-

senting the grey scale value of that sample. The grey scale values range from 0 to 255, The

output of the program are ascii files representing the scale and detail wavelet coefficients in

floating point format. For an in depth explanation of the these coefficients and the algo-

rithm, see the author's theses. The algorithm implemented in this program is taken from a

paper by Stephan Mallat. The paper is referenced in the authors theses. Be aware that we

found some printing mistakes in the paper which are addressed in our theses. The program

was developed on Sun sparcstation 2's. But, it should compile on any system with an ansi

standard C compiler. To compile the program, type make at the command prompt with the

default directory set to the current directory. Object files will then be created and linked

into an executable file called wave2. Then to run the program, type wave2 at the command

prompt. A menu should appear first with four choices. If not done at the command line

entry into the program, a file must be loaded from the current directory before either de-

composition or reconstruction can be executed. Once a file is loaded the D)ecomposition can

be selected. Then the Reconstruction can be selected. The Reconstruction portion depends

on files generated by the Decomposition portion. But, it is not necessary to run the Decoyi-

position during the same session as the Reconstruction as long as the Decompostion was run

in a prior session and the files still reside in the current directory. An alternate way to start

the program is to type wave2 followed by the name of the input file and its size. The size of

the input file must be a power of two and is defined to be the length along one dimension of

the sampled image. At this time the largest file used is a 512 by 512 sampled image. It is

possible to specify the path to an input file that is not in the current directory iether relative
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to the current directory or absolutely from tile root. However, if this is done, the output

files will be sent to that same directory. To review the usage of wave2 is

command prompt: wave2 [infilename] [size]

The infilename and size are optional but if the infilename is given its size along one

dimension of the square power of two sampled image must be given as well.

Also, only one file may be input in any one session. This fact is not obvious from the

program menu, so be aware. If you try to select the Load image option from the main menu

after you have already loaded a file, the result has not been fully characterized. In other

words, we haven't tried to figure out what would happen. This menu option is provided as

an alternative to specifying the file on tile command line.

The filters available are presently limited to the some of the Daubechies wavelets and

the Cubic Spline wavelet. But it is a simple process to add new filters to the filters c program

in the same fasion as those already included. To generate the H and G filters, see our theses

for references.

B.2 2D Multiresolution Wavelet Analysis Software

B.2.1 Listing of MAIN-WA VE.C

WAVELET ANALYZER MAIN PROGRAM DRIVER/************* k*********************************************************4. *4u*/

/* DATE: 09 April 91, 18 June 91

VERSION: 2.0

NAME: main-wave.c
DESCRIPTION: This program performs a multiresolutitLn wavtlet analysis
of an input image with a wavelet from its internal library chosen
interactively by the user. It handles the menu interface with the
user and drives the subroutines that take input, analyze, and produce
output. The the wavelet decomposition algorithm is a pyramid algorithm
proposed by Stephan Mallat in A Theory for Multiresolution Signal
Decomposition: The Wavelet Representation published in IEEE Trans.
on Pattern Anal. and Machine Intel. July 89. The algorithm uses a pair
of mirror filters derived from the scaling function, phi(x). The user
may enter the intended input image file from the cowmand line following
the calling command 'wave' or the user may wait to be prompted for
the input file name and size after starting the pr'gram with the same
command. In any case, additional images may be entered for processing
by selectinb the appropriate option from the program's main menu.
FILES READ: NONE (A subroutine reads the input files.)
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FILES WRITTEN: NONE (Subroutines write out the saved data in files.)

HEADERS USED: <stdio.h>, "jsmacros.h", "stevmath.h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: imageload.c, reconstruct.c, decompose..
AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version; adapted from phivl.c and haa~rvl.c
Version 2.0 was a rewrite to change the basic algorithm from the using
inner products to using the Mallat algorithm referenced above.

/* DECLARATION SECTION */

#include <stdio.h>
#include "jsmacros .h"
#include "stewmath.h"

int-array loadimageC);
void reconstruct();
void decomposeo);

/* MAIN PROGRAM BODY 9

void main(argc, argv)
int argc;
char *argv[] ;

/* initialize variables */

int selection;
int-array image, *imagepcinter &image;
char filename[64);

/* load image to be analyzed

if(argc != 3 kk argc ! 1){
print'("usage: wave <filename> <# of Rows> <# of Cols>\n");
exit(O);

if(argc ==3)
image = loadimage(filename, argc, argv);
/*printf ("returned from loadimage"); fflush(stdout);*/

do {

/* display menu */

prinvf("\n\n MAIN MENU\n\n");
prinvl(" 1 = Load a new image from disk.\n");
printf(" 2 = Perform Wavelet Decompcsition.\n");
printf(" 3 Perform Wavelet Reconstruction.\n");
printf(" 4 = Exit Program.\n\n");
printf(" Enter an integer (1-4):");

scanf("'d", &selection);
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if (selection 4) break; /* Quit program */

arge 1

if (selection == i) image = loadimage(filename, argc, argv);

else if (selection 2) decompose(imagepointer, tilename);

else if (selection == 3) reconstruct(imagepointer,
filename);

else {
printf(" \n\n Just enter an integer from 1 to 4 and");
printf("press return. \n");
I

} while (selection != 4);

/* THE END */
}l

B.2.2 Listing of LOADIMA GE.C

1*** ** ** * ** ** * **** ** *** * **4*** *** ** ** t** *** ***,~* **4**** *4*4** *4 *~* * ** * ** *4* ** **/********************i**********4***4**************************M****************/
WAVELET ANALYZER LOADIMAGE ROUTIN/

/* DATE: 10 April 91
VERSION: 1.1

NAME: loadimage.c
DESCRIPTION: This routine loads an image into an array whose name is
specified by the user interactively, it is intendad to be used as a
subroutine for the wave2 program.
FILES READ: One file specified by the user.
FILES WRITTEN: NONE

HEADERS USED: <stdio.h>, "jjsmacros.h"
CALLING PROGRAMS: main-wave.c
PROGRAMS CALLED: NONE

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Version 1.1 was changed to accept square matrices
only.

/* DECLARATION SECTION */

#include <stdio.h>
#include "jsmacros.h"
int **imatrixo(;
void free-imatrix();

/* FUNCTION BODY */

int_aaray loadimage(infilename, argc, argv)
char *infilename[64J;
int arg't;
char targv[];

/* initialize variables */
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int ij;
FILE *infile;
int array image;.

/* create array to hold the incoming image s/

if(argc
printf("\n\n Input filename of image to be analyzed:");
scanf("/s", in!ilename);
printf("\n\n Input the number of Ross in the square matrix");
printf("\n data file. (The number raust a power of 2):");
scanf ("Ytd", &image.ROW);
image.COL = image.BDW;

else 1
sprintf(infilena.'e, ",%,s argv[1E);
sscanf(argv[2), "U4", gimage.ROW);
image.COL = image.ROW;

I
image.array imatrix(l, imagz.ROW, 1. image.COL);

/* load image to he analyzrd */

OPENFTLE (inrfius in 1 1i'nme, "The Vatelet analyzer");
loopij (image. ROW, image. COL)

fscanf(infile,"%d", &image. array [:i+lJ Ej+1]);
CLOSE-FILE (i, infilename, "The Wavelet analyzer", Xm.file)
printf("\n ** The image %,s has been loaded for processing. **\n\n\n",

in!ilename);
return image;

B.2.3 Listing of DECOMPOSE.C

S---.WAVELET DECOMPOSIT1iO SUBROUTINE /

/w DATE: 19 June 91

VERSION: 1.0

NAME: decompose.c
DESCRIPTION: This sutroutine is jitended to be part of a Wavelet
analyzing program called "wave". The algorithm used is discussed in
the description of the main drivei modu).e called "main--wave.c.
Data is passed by reference from the main driver module. The data is
in ascii format arranged in a square aratrix Whose dimensions are a
power of 2. This requirement has not only made programming more
convenient but is required by the convoluton rcutine from Numerical
Recipes in C: The Art of Scientific Computing.

FILES READ. NONE (Passed by referenice from thQ caller.)

FILES WRITTEN: Four coefficient files at each level of analysis.
The file names begin with the input image filename
and end with an extension of the form ".nXm" where
n is an integer that represents the level, X is one

of the letters 'c' or Id' to represent phi
or psi coefficients respectively, and m is
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an integer 1, 2, or 3 that represents the
orientation verticle, horizontial, or angular
repsectively.

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: main-wave.c

PROGRAMS CALLED: convolve.c, filters.c, nrutil.c

AUTHOR: Steve Smiley and 3. Stewart Laing

HISTORY: Initial Version.

1* DECLARATION SECTION *

#include catdio .h
#include "jamacros .h"

void convolveo;
void filterso;
float *vectoro;
float **matrixo;
void tree..vectoro;
voit. free-.matr±ico;
int **imatrixo);

/* MAIN PROGRAM BODY *

void decompose~imagepoi-nter, infilename)
int-array *imagepointer;
char infilenameE);

1* declare variables

mnt i, j, kc, maxlevel, wavelet-.type;
float-vector h..otai, h-ofnflipo, g..ol.n, g-ot-nflipo, phi, phitlipo;
float-vector phitlipc. *phiflipcpointer = kphiflipc;
f loat-vyector *h-of-npoanter =&h-ot-n *h..o1.nflipopointer =&h-of-nflipo;
f loat-.vector *g-.of..npointer = &g..of..n, *g..of-nflipopointer =&g.,ot-nflipo;
float-vector *Phipointer = &Dhi. *ohiflinonointer = Anhiflino:
float-.array c-soef, dL-coef, d2..coe-f, d3.coet;
f loat-array *c-coe~pointer= &c-coef ,*dl-soefpointer= &dh-coef;
f loat-array *d2..coef pointer= &dt-coef . *d3scoef pointer= kdt-coef;
float-.array temp, *zemppointer = &temp;
FILE *outfile;
char I ilenaane[64J, uave-sode[641;
int..array newimage, *newimagepointer =&newimage:

/* allocate memory *

temp.ROW = imagnpointer-->ROW;
tesnip. CUL' = imagepok.nter->COI.;
temp.array =matrix~i, temp.ROW, 1, ternp.COL);
loopij (temp. ROW, temp. COL) temp. array [i+13J[j413 = 0.;
c-coei.ROW= imagepointer->ROW:
c-coef.COL =iinagepoiriter->COL;
c-coef.array= matrixc(!, c-coef.ROW, 1, c-coei.COL);
loopij(c-oef.ROW,c-.coel.COL) c-coet array [i+13 [j+1) 0.0;
dl-coef.OWW= imagepointer->ROW;
di-.coef.COL =imagepointer->COL;
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.~~~~~~~~ !;..-Z *..*4s-. .iJf.r1 r .

dl..coei.array =matrix~i, dl-coef.ROW, 1, d1_coef.COL);
loopij~d1_coef.ROW,dlscoet.COL) dl..coef.array~i+1J Lj+1) = 0.0;
d2-.coef.ROW = imagepointer-Xi.OW;
d2-coef.COL = imagepointer->.COL;
d2-soef.array = matrix~i, d2-.coef.ROW, 1, 42..coef.COL);
loopi4j(d2..coef .ROW,d2-soet .CDL) d2_.coe .array~i+1J][j+i) = 0.0;
d3--oef.ROW = imagepointer->ROW;
d3_coef.COL = imagepointex->COL;
d3-coef.array = matriz(1, d3soef.ROW, 1, d3.coef.COL);
loopij~d3scoef ,ROW,d3_coef .COL) d3_coef .arraylli+1[J Uti = 0.0;
neuimage.ROW =imagepointer->ROW;
neviuage.COL =imagepointer->COL;
newimage.array = imatrix~i, newimage.ROW, 1, newimage.COL);
loopij (nevimage .ROW,neuimage .COL) newimage.array~i+1J [j+i) 0;

h-.of-i.vector = vector(1,imagepointer->RaW*2);
loopi~imagepointer->ROW*2) tco~n .vector[io-1) = 0.0;
g-.ot-n. vector = vecsor( 1,imagepointer->ROW*2');
loopi~imagepointer-XLOW*2) g..ot-n.vector~i+1) 0.0;
h-af.if lips .vector =vector~ . imagepointer->ROW*2);
loopi~imagepointer->ROW*2) h..oT~nflipo.vector~i-] i) 0.0;
gstfnf lips .vector = vector(i, imagepointer-XRWQk);
loopi~imagepointer->ROW*2) g..oftnflipo.vector[i+1] 0.0;
phi.vector = vector(i ,2*imagepointer->ItOU);
loopi~imagepointer-XRaW*2) phi .vector EPA) = 0.0;
phiflipo.vector =vector(l,2*imagepointer->ROW,);
1oopi~imagepointer->RflU*2) phiflipo.vector~i+1) = 0.0;
phiflipc.vector =vector(i .2*imaxepointer->ROW);
loopi~imagepointer->ROW*2) phiflipc. vector 13+1) = 0.0;

1* display menu *

printfC"\n\nt DECOMPOSITION MEIU\n\n");
priritf(C' I = Piece-wise Constant.(MuiQ\n");
print! C" 2 =Piece-wise Linear.CIf/A)\n");
print! C" 3 = Daubechies N=2\n");
print! C 4 = Daubechies N=3.\n");
printf(" 5 Daubechies N4.\n");
printiC" 6 = Daubechies N=8.Vi");
printf(" 7 = Daubechies 1=6\n"q);
printf(" 8 =Daubechies 1=7\n");
printf(" 9 = Daubechies N=8.\n");
printf(" 10 = Daubc.chies N=9.\kn" );
printfC" 11 = Daubechies N=l 0.\n");
print!(" 12 = Splines.\n");
printlC" 13 = Morlet.(N/A)\n");
printfC"\n Enter an integer 1-13; "1);

scanfC"%/d", &wavelet-type);

/* error handling for invalid input *
if (wavelet-type < 3 11 wavelet-.type > 13) {

printf ("\nYou have chosen an Invalid Wavelet type or");
printf("1\nthis type is not currently available.");
}/* end if *

else {

/* Set wave-.code for use in output 1 nenames. *

if (wavelet-.type == 3) sprintf(wavo..code, "ldb2"');



if Cvavelet-.type ==4) sprintf(vave-.code, "db3");
if (wavelet-type ==5) spriatf(vave..code, "db4");
if (wavslet-type 6) sprintf(wave-.code, "ldbb");
if (wavelet-type 7) sprintf(wave-.code, '4db6"');
if (wavelet-type 8) sprint!(wave-.code, "dbl");
if (wavelet-type 9) sprintf(wavt-code, "ldb8");
if (wavelet-type ==10) sprintf(vave-code, "ldb9"l);
if (wavelet-type 11) sprint! Cwavescode, "db0");
if (wavelet-.type 12) sprintf(vavescode, "lspi");

/* Generate Phi and Filters *

filters Cuavelet..sype h-of-upointer,g..of-u.pointer,phipointer);
flipo~phipointer, phiflipopointer);

h-of..nflipopointer = h..ot-npointer;
g-ofnflipopointer = g-ofjtpointer;

lo~opij Cimagepointer->ROW,imngepointer->COL)
temppointer->array [i-Ii) [jIn = (float)imagepointer->axray[i+1) Ejfl];

/* Call convolution routine and save the coefficient arrays for ''
/e each level of analysis. *

marlevel = LOG2(imagepointer->ROW); /* Calculate the highest level *
k=1;
loopk(maxlevel){

if (temp.R0W >- h of_n.length){ /* image has to be bigger than filter *
printi("\nerforming convolution with filters, level'6);

printfC"',. . .', k+l);
convolve (teappointer, h..ot-nflipopointer, g-ot-nflipopointer,
c-coefpointer, dL-coeipointer,42-.ccefpeinter~dS..coefpointer);

sprintf(filenam~e, "'/.s.%/d.c.'/s", in! ilenamo, k-fl, wave-.code);
CRtEATE-JILE(outfile, filename, "The Wavelet Analyzer")
loopij(&-coef.ROW c-coet.COL)

fprintf~outfile, "%n'/.fn",7:~ef array [i+1J[j+13);
CLOSE-YILE~i, filename, "The Wavelet Analyzer", out! ile)

"sprintf(filename, "'/s.Yd~dl.%s", infilename, k+1 ,wavescode);,
CREATL-FILE(outfile, filename, "The Wavelet Analyzer")
.loopij (dLcoef ROW,dt-COef C~tL)

fprintf~outfile, "I%f\n", dlsoef. array (i+13 [j+1fl
CLOSESFILE~i, filename, "The Wavelet Analyzer', out! ile)
sprint! (filenamne, "'/,.%d.d2.%/s", in! ilename, k+l,wave..code);
CREATE-FILE(outfile, filename, "The Wavelet Analyzer")
loopij (d2-coef ROW,d2_conf .CGL)

fprintf(outfile, "'/f~n", d2_coef.azraylli+1)[j+Il));
CLOSESFILE(i, filename, "The Wavelet Analyzer", out! ile)

sprintf(filename, "'/,s.V/d.d3.'/s", in! ilename, k+1 ,wavescode);
CREATE-FILE(outfile, filename, "The Wavelet Analyzer")
loopij (d3-soef . R04,d3-coef .COL)

fprintf(outfile, "'/,\n"* d3.soef array [itlJ [jflJ);
CLOSE3FILE(i, filename, "The Wavelet Analyzer", outfile)
temp.RUW = c.-coef.ROW;
tempr.COL =c-coef.COL;
loopij (temp.ROW, temp. COL) temip. array [i+13)i+1 plc-.coef arrayl[i-'1J [j+ );

I/4* end if *
}/* end loop *

1 * end else *
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/* free memory */
free-matrix(temp.array. 1. temp.ROW. 1, temp.COL);
treejmatrix(c_coef.array, 1, c-coef.ROW, 1, temp.COL);
free.matrix(dl-coef.array, 1, dlcoef.ROW, 1, dl-coef.COL);
freejmavtix(d2_coef.array, 1, d2_coef.ROW, 1. d2_coef.COL);
free_matrix(d3_coef.arnay, 1, dS.coef.ROW, 1, d3_coef.COL);
free_vector(hlof_n.vector,l,imagepointer->ROW*2);

freevector(g_ofn.vector,l,imagepointer->ROW*2);
free.vector(phi.vector,l,imagepointer->R0W*2);
:'ree-vcct'r(phiflipo.vector, 1,imagepointer->ROW*2);
free._vector(phiflipc.vector l,imagepointer->ROW*2);
/* THE END */
}

B.2.4 Listing of RECONSTRUCT.C

WAVELRT RECONSTRUCTION SUBROUTINE

/* DATE; 2 July 91

VERSIONý 2.0 (uses spconvlv)

NAME, reconrtruct. c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
Annalyzing progeram called llael The a4ri. used je
the description of the main driver module called "main-wave.c.
It controls the portion of the program that reconstructs a previously
dtcomposed image using Mallat's multiresolution algorithm referenced
in the description of the calling program, "main-uave.c".

FILES READ; Fcur coefficient files at each level of analysis.
The file names begin with the input image filename
anQ end with an extension of the form ".fnt" where
n is an integer that represents the level. X is one of
the letters 'c' or Id' to represent phi or psi coef-
fii:ients respectively, and m is an integer 1, 2, or 3
that represents the orientation verticle, horizontal,
or aDgular repsectively.

PILES WRITTEN: One file with the extension '"rec".

kADELKS USED: <stdio.h>, "jsmacros.h"

CALLING PROGaAMS: main-wave.c
PROGRAMS CALLED: filtr$s.c, ruconvolve.c, nrutil.c
AUTHOR: Steve Smiley and Z, Stevart Laing
HISTORY: Initial Version.

/* DECLAR,.TION SECTIUN */

#include <Ctdio.h>
*include `jsmacros.h"

void filters();
void reconvolve();
float *vector();
float **matrix();
void freevvectoro;
void free_matrixo;
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iut **iuatrix();
void free-iuatrixo;

/* MAIN PROGRAM BODY .

void r~econstruct ( iagepointer,inftilename)
int..array *imagepointer;
char infilenazie l;

bp declare variables *

int i, j, kc, 1, maxievel, wavelet-.type;
iloat-.vector h-.c1.n, h..ot~nflipo, h..o1_f'..n&ipc, gstfn;
float-vector gsofsflipo. g-of..nflipc, phi, phiflipc;
float-vector 4h-.ot-npointer =khsof-s, *g..ot..npointer tg-otn;
float-vector *h-ot-nllipopointer = &h..of..nflipo;
float-.vector *g-oljitlipopointer = kg..ot..ntlipo;
float-.vector *h..otstflipcpointer = Aluot-nflipc;
float-vector *g..ofnllipcpointer = 4...oT..nflipc;
float-.vector aphipointer = &phi, 4phaflipcpointer = &phiilipc;
float-array c-.couf, di-coef, d2_coot, d3_coef;
tloat..array *c-coetp,.iiter= &cscoet, *dl.coetpointer= kdL-coet;
f loat-.array *d2-cocipointer= 8d2..coei, *dS..coetpointer= bd-coef;
f loat-.array temp. frtemppolnter = &temp;
int-.array new~iage, *nevimagepointer = tueuinage;
FILE *outtilu, *inf ii.;
char Iilenanere41. uave-code[64):
float holder(64);

/* allocate memory *

temp.ROU = imagepointer->ROW;
temp.COL = iuiagepointer->C"JL;
temp.array uimatrix(1, temp.P.OW. 1. temp.COL);
loopij~temp.k3.W,temp.COI' cemp.arrayti+1)[j+1J 0.0;
nevimage.ROW = imagepoiu~er->ROW;
newimnage.COL = imagepointer->COL;
nevimage.array = imatrix~i. neuimage.ROW, 1, meuimage.COL);
loopij (newuima~e. ROW, neuimage .COL) neuimage. array Ci+1) Ej+11 0.0;
c..coef .ROV = magepointer->ROW;
c-cefCO raa poinar->COL;
c-.coef.array= matrix~i, csaoef.RIJW. 1. c-.coef.COL);
loopij(cscoef.ROW,c..coef.COL) c..coei-arrayU+itlJ (jl= 0.0;
di-.coef.ROW = imagepointer->ROW;
dl-.coet.COL = imagepointer->COL;
di-coef.a~rray zmatrix~i, d1_coeT.ROW, 1, dL-coef.COL);
loopij (dl..coef.ROW, dlI -coest.COL) 41..coet. array [itlJ[ji-1JQ 0.0;
d2..coef.ROW= imagepointer->ROW;
d2-coef.CCL = imagepointer->COL;
d2-soef-array = matrix~i. d2-coef.ROW, 1, d2_.coef.COL);
loopij(d2..coef.ROW` d2_coot .CUL) d2..coet.array[itlJ[ji-1] = 0.o;
d3,coet RUW = imagepointer->ROW;
d3 coef.COL = imagepointer->COL;
d3..coef.array = matrix(1. d3_.coef.ROW, 1, d3..coof.COL'j;
loopij(d3_coef.ROW`,d3_.coet.COL) dtcoef.array~i+1J Ej+1J 0.0;

hst-on.vector = vector(i imagepointer->ROW*2);
loopi(imagepointer->R0W*2) h..of-.n.vector~i+1] = 0.0;
g..oln.vector =vector(i ,imagepointer->R0W*2);
loop i(rn~agepo int or->ROU* 2) g-ot n. vectorCitlJ1 = 0.0;
phi .vector =vector(i ,2*imagepointer->ROW);



loopi~imagepoirter->ROW*2) phi-vector~i+ij 0.0;
phi! lipc. vector = vector( 1 2*imagepointer->lOW);
loopi(imasepointer->RDV*2) phi! lipc .vector~i+1) = 0.0;
h..of..nflipo. vector = vector(I ,imagepointer->ROW*2);
loopi(imagepointer->ROW*2) hstfnflipo. vector~i+1) = 0.0;
g-o1-ntlipo.vector =vector(Cl imagepointer->ROW*2);
loopi(iuagepointer-4t0V42) g-.ot-nilipo. vector~i+1J = 0.0;
h-.otnaflipc.vector = vector~i ,imagepointer->lOW*2);
loop i(imagepo inter->R0V'm2) h...of..nflipc . vector Ui+13J 0.0;
g..ot-nflipc.vector = vector(I,imagepointer.->ROW*2);
loopi(imagepointer->R0W*2) g..oT~nflipc .vector (i+1J-- 0.0;

1* display menu

print! C"\n\nL RECONSTRUCTION MEIU\n\n");
printf(" I = Piece-vise Constant.(IA)\n");
print! C" 2 = Piece-vise Liusear.(I/O~n'9;
print! C" 3 =Daubechies 1=2.\n");
printf(" 4 = Dauoechies I=3.\n");
print!C (' = Daubechies I=A\n") ;
printiC" 6 = Daubechies 15.\n"O);
printIC" 7 = Daubechies 1=6.\n");
printiC, 8 = Daubechies I7?.\n") ;
print! C" 9 = Daubochies I-8\n">;
printf("I 10 = Daubvchies 19.\n");
printf(" 11 = Daubechies Ifl0.\n");.
printf("I 12 =SplinesAnII);
print! C" 13 = Norlet.CE/A)\n'I);
printf (" Enter an integer (1-13):");
scanf("7d", &vavelet-sype);

if(vavelet-.type < 1 11 wavelet-type > 13
print! ("nYou have chosen an invalid wavelet or");
print!C"\nit is not currently available.");
I

else{

/* Set value of vavescode for input filename *

if (vav-tletstvp, 3) aprintl(vave-code. "'db2");
if (uavelet..type 4) sprintf~vave..code, "ldb3");
if (wavelet-type ==5) sprintl(vave-csAe. "ldb4"');
if (wavelet-.type ==6) sprintf(vave-.ccC.oL, ldbS"');
if (wavelet-type ==7) sprintf(vave..code, "'db6"');
if (wavelet-type 8) sprint! (vave-code. "ldb~l");
if (wavelet-.type =-9) sprintf(vavescode. "ldb8");
it (uawilet..type io) sprintf(vave.sode, "aWW");
if (va~elet..type 11) sprint! Cwave..code. "dbo");
if (wavelet-.type ==12) spriatt(vave..code, "spi");

/* Generate Phi and Filters *

I ilters(uavelet..type .hscf..npointer,g-.of..npointor,phipointer-);

flip the filters *

looplj (h..of~jipointer->length)
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holder Eh..stnpointer->length +1 -jk= hsof..npointstr->vector~j);
looplj (h.stfnpointer->length)

Iuot~npoiater->vector Ci)= holder [jil;
looplj (g..of..npointer->longth)

hol.der [gstfnpoiuter->length + 1 -j J= g..ot~npointer-)vector[J J;
looplj Cg..otnpointer->length)

g..sfuipointer->vector[jJ = holderlljj;

h..ot-nflipcpointer= h..of-.npointer;
g...otnflipcpointer= g-ofnpointer;

/4' Call reconvolution routine to reconstruct from %.iursest phi .
/* coefficients and all of the psi coefficients. *

maxievel =LOG2(imagepoiater->ROW);/*Calculate the highest level*/

temp.ROW = 1; temp.COL = 1;

do { 1* make sure image is bigger than filter *
temp.ROW *=2;
temp.COL *2;
--maxleval;
I while Ctenp.ROW < h-.of..n.length/2);

c-soof.ROW =temp.RCW; c~coef.COL = temp.COL;
dl-coef.RIJW temp.ROW; dL-coef.CDL = temp.COL;
d2-coef.RUW temp.ROW; d2-.coef.CDL = temp.COL;
d3-.coef.ROW z tempROW; d3.soef.COL = temp.COL;
I1 1;

for (k=maxlevei.; k>O ;--
/4' for~krmaxievel;k==mazlevel;--k)( ~

if~l
sprintf(filename, "%n.5r.c.%/s", infilenaine, k,uave..sode);
OPEJCF1LS(inf ile, filename, "The Wavelet Analyzer")
1oopijkfcsoef.ROW,c_.soef.COL)

fscan-?(infile, "%f\n", &c_coef.a~rray[i4-1J[j+I1));
CLOSEJFILE~i, fi].ename, "The Wavelet Analyzer", mufle)

I1 0;
) 1* end if *

else,{
csCoe'lROW = temp.FkCW;
c-cool COL = temp.COL;
l;_ooij (c__coef .ROW,c-.coef .COL) c~soef .axra~y[ii31J j+Ij

tompf.arrayIji4l] [jp1)
} * end else *I

spriritf(filename, "%/s.%/d.dlA/,s", infilenane, k,wave-code)-
OPEJLFILE'kinfile, filename, "The Wavelet Analyzer")
loopij (dt~cnef . RW,d1_coef .COL)

fscanfk'atfiie, "'/,\n", Adi...coe-f array [i+1)Ej [11);
CLOSL-FIL.E(i, filename, "The Wavelet Analyzer", infile)

sprintf~fiienam;., "%s.%d.d2.%s", infilename, k,wave,.code);
OPENSILE(i~nfile, filename, "The Wavelet Analyzer")
loopij (d2.. coat . RCW,dt-coef.-COL)

fscanf(inffla, 'Yc!_\n", &d2..coetj array [i+1) (p+1));
CLOSEJFILE(i, 1filename, "The Wavelet Analyzer", infile)

sprintf (filerame, "'/r-.'d.d3.%s", infilename, k,vave-code);
OPEILFILE~infilo, filename, "The Wavelet Analyzer")
loopij (d3_coef . RW,o3_coef . CDL

fs~canf(infile, "% &" dS...coef.array[i+I1)[jp1));
CLOSE3FILE(i., filename, "The Wavelet Analyzer", infile)
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*1
printf("\nPerforming reconvolution with filters, level %d...", k);
reconvolve(temppointer, h.oftnflipcpointer, g.otnflipcpointer,

cscoefpointer, dl-coefpointer, d2-coefpointer,
d3Scoefpointer);

if(wavelet-type == 12)
loopij(temp.ROW,temp.COL) temp.array[i+lJ [j+1) *= 4;

sprintf(filename, "%s.%d.c.%s.rec", infilename,k-1,wavescode);
CREATE.FILE(outtile, filename, "The Wavelet Analyzer")
loopij(temp.ROWtemp.COL)

fprintf(outfile, "If\n", temp.array[i+1J[j+1));
CLOSEFILE(i, filename, "The Wavelet Analyzer", outfile)

} /* end loop */
} /* end else */

/* free memory */

free-matrix(temp.array, 1, temp.ROW, 1, temp.COL); 4i

free-imatrix(nevimage.array, 1, newimage.ROW, I newimage.COL);
free-matrix(c-coef.array, 1, c-coef.ROW, 1, c coef.COL);
free_matrix(d1_coef.array, 1, dlcoef.ROW, 1, dlcoef.COL);
free_matrix(d2_coef.array, 1, d2,coef.ROW, 1, d2tcoef.COL);
free.matrix(d3_coef.array, 1, d3-coef. ROW, 1, d3_coef.COL);

/* THE END */

B.2.5 Listing of FILTERS.C i

WAVELET H&G FILTER SUBROUTINE

/* DATE: 20 June 91

VERSION: 2.0
NAME: filters.c
DESCRIPTION: This sub:outine is intended to be part of a Wavelet
analyzing program called "uave2". The algorithm used is discussed in
the description of the main driver module called "main-wave.c.
This routine provides the caller with the discrete points of a pair of
response functions previously derived and hard coded correrpondini to
the type of wavelet desired. Also, the scaling function,
phi(x) is provided for the purpose of generating the phi
coefficients at level zero.

FILES READ: NONE
FILES WRITTEN: (Passed by reference back to the caller.)

HEADERS USED: <stdio.h>, 'jsmacros.h"
CALLING PROGRAMS: decompose.c, nrutil.c

PROGRAMS CALLED: NONE
AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Version 2 altered filters.c for spatial convolution from the
Fourier corvolution used in version 1.*/

/* DECLARATION SECTION */

#include <stdio.lt>
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WSinclude "jsmacros .h"

M* AIN PROGRAM BODY *

void filters (wave let-type, h-otnpo inter, ,g..of spo inter. phipo iuter)
irtt wavelet-.type;
float-.vector *luot..npointer, *g-.ot-upointer, *phipointer;

/* The response functions of the H and G filters are evaluated at the *
/* negative of the argument. i.e. g(n)=gC-n) and h~n)=h(-n)

if Cwavelet-type ==I)
printf ("\umhis selection not currently available.");

if (wavelet-.type ==2)
printf("\nmhis selection not currently available.");

if (vavelet-type ==3)
h..of-.npointer->vector[4l) .482962; /* h(0)i'/
h-ofnpointer->vector[S) = .836516; /* h(l)*/
h-of-.npoiuter->vector[6e) .224143; /* h(2)*/
h..oi..npointer->vectorE7) = -.129409; /* hC3)*/
b-of-..pointer->vector~i) = 0.0; /* h(-3)*/
ii-of-.npointer->vectorl2] = 0.0; /* hC-2)*/
ii-otnpointer->vector[3) = 0.0; /* h(-1)*/
h-.o!..npointer->iengtli = 1;

g-.of-npointer->vector[4J .836516; /* gCO)*/
g..of..npointer->vector(5J = -.482962; /* g(1)*/
g-of-npointer->vector[6J = 0.0; 1* g(2)*I
g-of-pointer->vector(7J = 0.0; /* g(3)*/
g-.of-npointer->vector[1J = 0.0; /* g(-3)*I
g-of.npointer->vector[2J -.129409; /* g(-2)*I
g-.of-.npointer->vector[3aj -.224143; /* gC-1)*/
g-.of-npointer->length = 7;

phipointer->vector(1) 0.032348658; /* phi(O)*/
phipointer-->vector(2] 1.302567547; /* phi(1)*/
phi~ointer->vector[3] -0.334912635; /* phi(2)*/
phipointer->vector[4] = 0.0000000001; 1* phiC3)*I
phipointer->vector [5) = 0.0000000001; /* phi(-3)*/
phipointer->vector(6) = 0.0000000001; 1* phi(-2)*/
phipointer->vector[7) 0.0000000001; /4 phiC-1)*/
phipointer->length = 7;

if (wavelet-.type == O
h-.of-npointer->vector[6) = 0.332670553; /* h(0)*/
h-.of-npointer->vectorE7) = 0.806891609; /* hC01)~
h-.ot-npointer->vector[81) 0.459877502; /* h(2)s/
h-otupointer->vectorE9] -0.135011020; 1* h(3)*I
h-of.npointer->vector[lo) = -0.085441274; /* hi(4)*/
h-ot-npointer->vector[11) = 0.035226292; 1* hCS)*/
h-o-tapointer->vector[1) = 0.0; /* h(-5)*/
h-.of..npointer->vector[2) 0.0; /* h(-4)4'/
h-.ot-npointer->vector[3J 0.0; /* h(-3)*I
h-.of..npointer->vector(4] = 0.0; /* h(-2)*/
h-.of-.npointer->vectorfSJ = 0.0; /* hC-i)*/
&iof-u.pointer->length =11;

g-ofnpointer->vector[S) =0.806891509; /* g(0)*/
gS-f-.npointer->vector[7) = 0.332670553; /4 g~l)*/
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g..oi..npointer-->vector[8] 0.0; 1* &C2)*/
g..of-npointer->vector[9] 0.0; /* g(3)*/
g..of..npointer->vector[1O] 0.0; /* g(4)*/

g...of..npointer->vector[ll) 0.0; /* gC5)*/
g-.of-.npointer->vector[1) 0.0; /* g(-5)*/I
g..of~.npointer->vector[2] 0.459877502; /* g(-4)*/
g~of..npointer->vector[3) -0.135011020; 1* g(-3)*/
g-.of-.npointer->vector[4) -0.085441274; /* g(-2)*/
g..of...npointer->vector[5J 0.035226292; /* g(-1)*I
g..of-pointer->length 11;

.phipojinter->vector[1) = 0.001129175; /* phi(O)*/I
phipointer->vector[2] = 1.285632059; /* phi~l)*/J
phipointer->vector[3] -0.386241412; /* tPhi(2)*/

phipointer->vector(41 = 0.096244687; 1* phi3)*/A
phipointer->vector[S] = 0.004229018; /* phi(4)*/
phipointer->vector[6] = 0.000000001; /* phi(S)*/
phipointer->vector[7) 0.0000000001; /* phiC-5)*/
phipointer->vector(8] =0.0000000001; /* phi(-4)*/
phipointer->vector(9) 0.0000000001; /* phi(-3)*/
phipointer->vectortlO) 0.0000000001; 1* phi(--2)*/
phipointer->vector[1lil 0.0000000001; /* phiC-1)*I
phipointer->length =11;

if (wavelet-.type f
h..of..npointer->vectorL8) = 0.230377813; /* h(0)*/
h~of~npointer->vector[9] = 0.714846571: /* h(1)*I
h..of..xpointer->vector[10) 0.630880768; 1* hC2)*/
h..of..npointer->vector[Ill]= -0.027983769; /* hC3)*/
h-of-npointer->vector[12] -0.187034812; /* h(4)*/
h-.of-.npointer->vector[l3j = 0.030841382; /* h(5)*/
h..of..npointer->vector[l4) 0.032883012; /* h(6)*/
h-of-u.pointer->vector[lSJ = -0.010597402; /* h(7)*/
b-otnupointer->vectortl = 0.0; /* h(-7)*/
li-.of-.npointer->vectorE2) 0.0; /* h(-6)*/
h-ofnpointsr->vector[3] = 0.0; /* h(-S)*/
h-of-npointer->vector[4] = 0.0; /* h(-4)*I
h-.of-.npointer->vector[5] = 0.0; /* h(-3)*/
h..of..npointer->vectorE6] = 0.0; 1* h(-2)*/
h...of..npointer->vector[7) = 0.0; 1* h(l-1)*/

h-ot-.npointer->Iength 1b;

g-otnpointer->vector[8] = 0.714846571; /* gCO)*/
g..ofrnpointer->vector[9] 0.230377813; /* g(1)*
g..otfjipointer->vector[10o] 0.0; /* gC2)*/
g~of..npointor->vector[llj = 0.0; /* g(3)*I
g-.of-.npointer->vector[12] = 0.0; 1* g(4)*/
g..of..npointer->vector[13) 0.0; /* g(5)*/
g..of-jipointer->vector'.14) 0.0; /* g(6)*/
g~oi...npotknter->vector[15] = 0.0; /* gC7)*/
g-.of-.npointer->vector~l] = 0.0; /* g(-7)*I
g..ot-npointer->vector[2) = -0.010597402; /* g(-6)*/
g.ofjipointer->vector[3) 0.032883012; /* g(-5)*/
g..of..npointeir->vector[4) 0.030841382; /* g(-4)*/
g..oftnpointer->vector[51 = -0.187034812; /* g(-3)*/
g~of~npoin.ter->vector[6] = -0.027983769; 1* g(-,2)*I
g-of npointer->vector[7] = 0.630880768; /* g(-i)*/

g-ot.npointer->length =. 15;

phipointer->vector[1) = 0.000041362; /* phi(0)w/
phipointer->vector[2] = 1.010495941; /* phi~l)*/
phipointer->vector[3] = -0.039093761; /* phiC2)*/
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p~aipoiuter->vectort4) J.041834300-0/ phi(3)*/
phipainter->vector[(51 -0.01-2011135; /i' phi(4)*/
phipointer->vectorL8) -0.001294973; /* phi(5)*/
phipointer->vector(7] 0.000021869; /* phiC6)*/
phipointez->x-ectorIIE' 0.000000001; /'* phiC7)*/
phipointer->vector(9j 0.0000000001; /* phi(-7)*,'
phipointer->vectorfloJ 0.0000000001; /* phi(-'8)*/
phipointer->vector[11] 0.0000000001; /4 pkii(-5)*f
phipointer-)vector[12) 0.0000000001; /* phi(-4)*I
phipointer->vector[13J 0.0000000001; /* ph±C-3)*/
phipointer->vector[14J 0.0000000001; 1* phi(-2)*/
phipointer-K-vector[1SJ 0.0300000001; /* phi(-1)*/
phipointer->length =15;

if (wavelet-type W
printf("\nThis selection not currently available.");

if (wavelet-.type 7)f
h..ot~npointer->vector[12] = 0.111540743; /* hCO)*/
h..ot~npointer->vectortl3) = 0.494623890; /* h~l)*/
h-of-npointer->vectortl4) = 0.751133908; /* h(2)*/
hWotnpointer->vector[15] = 0.315250382; 1* hC3)*/
h~ostnpointer->vector[16) -0.226264694; 1* h(4)*I
h~otxipointer->vector[I17 -0.129766868; 1* hC5)*/
h-otnpointer->vector[18) = 0.097501606; /* h(6)*/1
It_otrxpointer->vector[19) 0.027522866; 1* 'n(7)*/
hlostnpointer->vectorE20) = -0.031582039; /s hC8)*/
h..ot..npointer->voctorE2l] 0.000553842; /* h(9)*/
Iu~of..npoiater->vectorl22) 0.004777257; 1* h(10)*/
li..of..npointer->vectorE23) -0.001077301; ./* h(11)*/
b..of-npointer->vector[1] =0.0; /* h(-11)*/
h..oftnpointer->vector[2J =0.0; /* hC-10)*/
Ix..ot..npointer->vectorE3J 0,0; /* h(-9)*f
h-ot-npointer->vector[4J 0.0; /* h(-8)*/
hst...npointer->vector[bl 0.0; 1* h(-7)*/
h&ofnpointer->vector(6J 0.0; /* h(-6)*'/
h..ot..npointer->vector[7] 0.0; 1* h(-5)s/
hv.ot~npointer->vector[8) 0.0; /* h(-4)*/
Icol..npointer->vector[9] 0.0; /* hC-3)*/
h-.of-npointer->vector[lo] 0.0: 1* h(-2)*/
t_oI..apolnter-?vector~liA 0.0u; /*h-i*
h-.of-.npointer->length = 23;

g...c'tnpointter->vector[l2] -0.494623890; /* gCO)*/
gstof.npointer->vector[133J 0.115407434- 1* g~l)*/
g._ot~npointer->vector[A14 = 0.0; /* gC2)4/
g-.ot-npointer->vector[15) = 0.0; /s gC3)*1
g..ot~npointer->vector[G16 = 0.0; ,/* gC4)*/
g..ot~npointer->vector[l7j = 0.0; /s g(5)*/
g..ot~npointer->vector[l8) = 0.0, /* g(6)*/
g..ot..npointer->vectortl9) = 0.0; ./* g(7)*/
g-os-npointer->vector[20) 0.0; /s (8*
g-ot-npointer->vector[21) = 0.0; ,'s g(D)*/
g-os-npointer->vector[22] = 0.0; /4 g(10)*I
g-.of-npointer->vector[23) = 0.0; ,'s g~lflsI
g..oftnpointer->vector[1] = 0.0; 1* gC-11)s/
g..of..npointer->vector[2) = 0.001077301; /4 g(-10)*/
g..oftnpointer->vector[3J = 0.004777257; /c' g(-9)s/
gsof..npointer->vector[41 = -0.000553842; 1* g(-8)*/
g..olaxpointer->vector[51 = -0.031682039; /* g(-?)*/
g-ot-np ixeWr->vectorlel = -0.027522866; 1* gC-6)*/
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g..ot-npointer->vector[7J 0.097501606; '4' g(-S)4'/
g-.ot-npoint.er->vector[8J 0.129766868; /* g(-4)*f
g-ofnpointer-->vectorE9] -0.226264694; /4' g(-3)*/
s-cf-.npointer->vector[Ilo) -0.315250352; /4' g(-2)4'/
g..of-.npointer->ven~torEll) 0.751133908-; /* g(-1)*/

g-.ot-npointer->length z23;

phipointer-)vector~l) 0.000018901; /4' phii(0)'/
phipointer->vector(2) 0.474401220; /* pi1*
phipointer->vectorE3) = 0.807783651; /4' phi(2)4'/
phipointer->vector[4) -0.376153951; /* phi(3)*/
phipointer->vector(b) =0.137747794; /4' phi(4)*/
phipointer->vector(6) = -0.024S43102; /4' phi(S)*/
phipc'inter->vector[l) = -0.003162779; /4' phi(6)*/
phipointer->vector[8] 0.001579497; /* phi(7)4'/
phipointer->vector [9] = 0.000017680; /4' phiCB)*/
phipointer->vector[10) -0.000001908; /4' phiC9)*/
phipointer->vector[11) 0.000000002; fis phi(10)*/
phipointer->vector[l2) = 0.000000001; /4' phi(11)"/
phipointer->vectorfl3j = 0.0000000001; /4' phi(-11)*/
phipointer->vector[l4j 0.0000000001; 1* phiC-10)4'I
phipointer->vector[1lbl 0.0000000001; /4' phi(-9)4'I
phipointer->vector[16) 0.0000000001; /* phi(-8)4'/
phipointer->vector [171 =0.0000000001; /4' phi(-7)*/
phipointer->vector[18J 0.0000000001; /4' phiC-6)*/
phipointer->vector[l9j = 0.0000000001; /4' phi(-5)4'/
phipointer->vector[20J 0.0000000001; /4' phi(-4)4'/

phipointear->vector, [22 0.000000-0001; 4 hi-)'
phipointer->vectorE23] 0.0000000001; /* phi(-1)4'/

phipointer->length 23;

if Cwavelet..type == 8)
prin.t! ("\nThis selection not currently available.");
I
if Cwavelet-type = )
prirtt!C"\nThis selection not currently available.");

if (wavelet-.type == icO{
print! C"\nThis selection not currently available.");

if (wavelet-type == 11)f
print! C"\nmhis selection not currently available.");
I
if (wavelet...rs& == 12)f

h..ot-npointer-Ž,vector[13] 0.542; /4' h(0)e'/
h-.o!..npointer->vector[14] 0.307; 1* h~l)*/
h-.of-npointer->vector[lS) -0.035; /4' h(2)*/
h..of npoiInter->vectcrE[16i -0.078; /4' b(3)4'/
h..ofnpointer->vectcir[17] = 0.023; /"' 11(4)*/!
h..of-npointer->vector[l8) 0.030; /4' 11(5)4'
h-of-npointer->vector[l9) -0.012; /4' h(6)*/
h-.of-npointer->vector[20) -0.013; /4' h(7)*/
It-otnpointer->vector[21) 0.O006; /4' 1(8)4'!
11_otnpointer->vecvorE22) 0.006; /4' 1(9)4'!
11_ot-npointer->vectorE2a) = -0.003; /' 11(10))*!
h..of-.npointer->vector[24) -0.002; /' W11()W
bstf-npointer->veCtor[253 =0.0; /4' 1(12)4'!
hst..npointer->Vector[1) 0.0; /' h(-12)4'/
h-.oi-npointer->vectcrf2) -0.002; /4' h(-11)*/
h-otnpointer->vector[3) -0.003; /4' hC-10)*/



hVofnpointer->vector[43 = 0.006; 7* h(-9)4'/
h~otnpointer->vectorfs) =0.OOE; /* h(-8)s./
h..oftnpointer->vectorr6] = -0.013; 1* h(-7)*/
h~ot~npoinxter->vector[71 = -0.012; 7* h(-6)*/
hstfnpointer-->vector[8] = 0.030; 7* h(-5)*/
h..ot~npcinter->vector[9] = 0.023; 7* h(-4)*/
hLofinpointer->vector[I10 = -0.078-ý 1* h(-3)*/
h..ol~npointer->vector[11) -0.036; 7* h(-2)*7'
h-ot.npointer->vectorll2] 0.307; /,, hC-1)*/
h..ofnpcinter->J~ength = 25;

g~oftnpointar->vectorf13] =-0.307; /* gCO)*/
g_.oftnpointer->vector[14j) 0.542; 7* g(1),ýI
g..ot.npointer->vector[I1S = -0.307; 7* g(2)*/
g..ot..npointoer->vcctor[16) = -0.035; 7* g(3>*/
gsof~npointer->vector[171 = 0.078; 1* g(4)*/
g~ofjipointer->vector[I18 = 0.0"3; 7* g(5)*/
g~oftnpointer->vectorCI9) = -0.030; 7* 1j6)*/
g~of..npointer->vector[20) = -0.012; 1* g(7)*/
g-of..npointer->vectorE2i] = 0.013; 7* g(S)*/
g..ot..npointer->vector[22] = 0.006; 7* g(9)*/
g-of.npainter->vector[23] -0.006; /* g(!lO)*i
g~oftnpointer->vecto-r [24] = -0.003; /* 3(1ti)*/
guvf..npointer->vector[253 = C.002; /* g(12)*/
g-ofnpointer->vector[1] = 0.0; 7* g(-12)*7
g-ofnpointer->vector[2) = 0.0; 7* g(-11)*/
g~ofnpointer->vector[3) 0.002; t'. g(-10)e'/
g..of npoir'ter->vector [4J = -0.003: 7*g(9/
g _onpoine->vector[S] = -0.006; 7* g(-fl)*/

gstf~npointer->vector[6] = 0.006; /* g(-7)*7
g..of~npointer->vector[T3 = 0.013; /* g(-6)*/
gstfnpuinter->vector[8] = -0.012; 7* g(-5)*/
g..of~jxpointer->vector[9J -0.030; 7* g(-4)*/
g-of -npointer->vector [10J = 0.023; /,- g(-3)s7,
gsof..npointer->vector~l]J 0.078; 7* g(-2)*I
g.-of-npointer->voctor[12J = -0.035; 7* g(-1)*/
g..of inpointer->length. 26;

phipointer->vector[1J = 0.5385; /* plii(0)*/
phipointer->vector[2) = -0.2106; 7* phi(1)*/
phipointer->vector[3] 0.04319; 7* phiC2)*/
phipointer->vector[4) 0.01334; 7* phi(3)*/I
pliipointer->vectorlSj = 0.00738; 7* phi(4)*/
phapointer->vector[6J = -0.00324; 7* phi(b)*7
phipointer->vector[73 = 0.00030; 7* phiC6)*/
phipointer->vector[8D -0.00012; 7* phiC7)*7
phipoinrer->vectorE9j 0.00001; 7* phi(8)*/
phipainter->vector[10) 0.0000000001; /* phiC9)*/
phipointer->vector[11J 0.000000001; 7* phi(10)*7
phi~pointer->vector[12J 0.00000000i; 7* phi(11)*/
phipoiuter->vectorL13) = 0.0000000001; /* phi(l-11)*/
phipoiater->vectortL4) 0.0000000001; /* phi(--10)*7
phipointer->vector[EI15= 0.0000000001; 1* phi&--9)*/
phipointer->vector[16J 0.00001; 7* phi(-8)*I
phipoirxter->vector[17] -O.000121 7* phi(-7)*7
phipointer-->vector[18J (1.00030; 1* phiC(-6)*I
phipointer->vector[19] =-0.00324; 7* phiC-S)*I
phipointer->vector [20] 0.00738- 7* phii(-4)*/
phi~pointer->vector[21] 0.01334; /* phi(-3)*/
phipointer->vectorE22j = 0.0431P-; 7* plLl(-2)*/
phipointer->vector[23) -0.02106;- 7* phi(-1)*/



phipointer->length 23;

if (wavelet-type == 13){
printf("\nThis selection not currently available.");
if (wavelet-type > 13 11 wavelet-type < 1)

printf("\nYou have chosen an invalid selaction.");

/* THE END */ ]
B.2.6 Listing of CONVOLVE.C

WAVELET CONVOLUTION SUBROUTINE
1*4*** * *** ** ** * *** *-k*** ** *** ** * * * *** * * * **4*4* ** ** * *** *4.* * *** ** *** ** **44* * * /

/* DATE: 19 June 91
VERSION: 1.0

NAME: convolve.c
DeSCRIPTION: Thiks subroutine is intended to be part of a Wavelet
analyzing program called "wave". The algorithm used is discussed ±n
the description of the main driver module called "maia-wave.c.
D-.ta is passed by reference from the decomposition subroutina. Data is
in ASCII format arranged in a square matrix whose dimensions are a
power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numerical
Recipes in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from th.: caller.)

FILES WRITTEN: (Passed by reference back to the caller.)
HEADERS USED: <stdio.h>, "jsmacros.h"
CALLIEG PROGRAMS: decompose.c, nrutil.c

PROGRAMS CAILED: needs nr library, libnr.a

AUTHOR: Steve Smiley and J. Stewart Laing
HISTORY: Initial Version.

/* DECLARATION SECTION */

#include <stdio.h>
#include "jsmacros.h"

float *vector(;
float **matrixo;
void free.vectoro;
void freevector(;
void spconvlv();

/* MAIN PROGRAM BODY */

void convo.ve (datainpointer, h-of.npointer ,g-of-npointer, c-coefpoint.er,
dlcoetpointer, d2_coefpointer, d3_confpointer)
float-arr;y *datainpointer;
float vector *h_of_npointer, *g-of-npointer:-
float.arr'ay *ccoefpointer,*dl-coefpointer, *d2_coefpointcr,*d3_coofpointer;{
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-TIM., Ii 7 .'~~

/* declare variables *

iut i. j;
f loat-.vector rowin,rowout,colin,colout,respoiiae;
f loat-.a~rray temp;
FILE *outfile;
char fizlename [64);

/* allocate memory *

temp.array =matrix~i. data' pointer->ROW. 1, datainpointer->COL);
loopij Cdatainpointer->PROW~da~ainpointer->CDL) tesp.array~i+i) (p1) 0.0;
rowin.vector = vector(1,2*datainpoiniter->CDL);
loopi(2*datainpointer->COL) rowin.vector~i+1) = 0.0;
rowout.vector = ve';tor(1 ,4sdatainpointer->COL);
loopi Coatainpointer->COL*4) rowout .vector i~ 1) = 0.0;
coin .vector = vector( 1, 2*datainpoin~ter->ROW);
loopiC(2 *dat ainpo int er->ROW) colin. vectorl[i+i) = 0.0;
colout .vector =vector(1 ,4*datain-pointor->ROW);
loopi Cdatainpointer->RDW*4) colout .vector [i+ 1) = 0 .0;
response.vectrar vc~ctor(1,2*datainpointer->BOW);
loop i(dat ainpo int er->JWW*2) response, vector Ei+1J 0.0;

rowin .length = 2*datainpointer->CtJL;
coin .length = 2*datainpointer->ROW;

/* perform convolution *

printlC"\nConvovling rows with h-).)
loopi~datainpointer->RIJW){ /* convolve rows with hC-n) *

loopj (datainpointer->ROW*2){
response.voctorlj+1) = hof.,npointer->vector~jtl);

loopj (dataxnpo inter->COL) rowin . vector [j + 1) = datainpoint er->array Ex!J~+ l U);
spconvlv(rowin. vector,rovin. length,responve. vector,h..otnpointer->length, I,

rowout .vector);

loopj(datainpoint-er->COL/2) temup. array U+11 [j+1) = rowout. vector 1t2*(j-t1)J
} /* downsample by select Thy even colas*

printf("\nConvovling cola with h(-n). ..1
loop i(dLaainpo in ter->COL/2){ý /* convolve cols with hC-n) *

loopj (datainpointer->ROW*2)
response.vector~j+-1) = hofsnpointer->vector~j 41);

loopj(dataiapointer-ft0W) colin.vector~j+1) = temp.array~j+1J [ifl)1;
spconvlv (colhin. vector, colin. lengthresponse. vector,lh-of tipOiftet-)-lefgth. 1,

colout .vector);
loopj (datainpoinxcer->ROWf-i2) c..coetpointer->array~jtlJ Iii-1) = colout . vector [2*Cjt+1)J;
} * downsample by selecting even rows *

printf("\nconvovling cola with g-)
loop i dat ainpoirnter ->COLI2){ f1* convolve cols with g(-n) *

loopj (datainpointer->ROW*2)
response.vectorllj+1) g~oi..npoi~nter->vector~j+i];

iLoopj (data inpoizitter->ROW) ct lin1.vector[j+1) =zemp.ar~ray~j#+1)[i41);
spcoulvlv (cohin, vector, colin. length, response. vt~or, ,&.ot npointex->length, 1,

colout.vector);
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loopj Cdatainpointer->RDW/2) dl..coefpointer->array t+in) in) colout .vector(2*(j+1)J;

printf ("\nConvovling rows with g(-iO. .. )
loopi(datainpointer->ROW){ /* convolve rows with gC-n)*,

loopj (datainpointer-)'ROW*2)
response, vectorEj +1J = 5.ot-npointer->vector~a+1J;

loopj Cdatainpointer-)'COL) rovin. vector[j+1) datainpointer->arrayti+1J EjflJ;
spconvlv~rovin.vector,rowin. length.response. vector.g..of...rpointer->length, 1,

rowout .vector);
loopj Cdatainpointer->COL/2) temp.array Ei+1) tj+1)= rowout .vector[2s(jt1)];

printf ("\nConvovling cols with h(-n) ...')
loopi(datainpointer->COL/2){ /* convolve cola with h(-n) *

Jloopj (datainpoiuter->ROW*2)
response. vector[j +1i) h..of-zpointer->vectOr~j+1];

loopj(datainpointcr-XLOW) coiin.vectortj+1J = tomp.arraytj+1] [i+iJ;

spconvlv~colin. vector,colin. length,response .vector,h~ot~npointer->length, 1,
colout .vector);

ioopj Cdatainpointer->ROW/2) d2_coef point er->artay [j +1) [ui) 1 = colout. vectort[2*Qj+1)J;

printf("\nConvo>vling cols with &(-n) ... "0):
loop i dat aiinpoiat er ->-COL/2){'f /* corivolvu .oIs with C-)

loopj Cdatainpointer->ROW*2)
response. vectorIjt+1J g-of-pointer->vectorlj+1l;

loopj~datainpointer->ROW) colin.vector[j+i.] = temp.arraytj+1) Ei+i);
spconvlv~colin.vector,colit. length~response .vector,g..ofnpoiflter->lIfgth, 1,

co1 cut.vector);
loopj Qatainpointer->R0U12) dt-coefpointer->array (jn) [i+1) colout .vector [2*Cj+1));

/* reset row and col indeces. *
c-.coetpointer->ROW = datainpointer->ROW/2;
c-coefpointer->CCL = datainpointer->COL/2;
dl._coefpointer->ROW = datainpointer->ROW/2;
cil-.coetpointer->COL = datainpointer->COL/2;
d2-coofpointer->tOW = datainpointer-t RaWI2;
d2...coefpointer->COL. = datainpoimter->CUL/2;
d3-. coefpointer->ROW = datainpointer->ROW/2;
03..coefpointer->COL= dataizipointer-->CCJL/2;

/* free wcemory */

free-.matrix (temp .array, 1, datainpointer->ROW, 1,
datainpointer->CCL):
free..vec~tor (rowin.vector,1,2*datairs± sinter-->ROW);
free-.vector (rowout .vec.tor-, 1,4*datainpoin~ter-MtOW);,
free-vector (colin. vector, I,2*datainpointer->ROW);
Iree-sector (colout.vector,1,4*datainpoiflter->RUW);
free vector (response. vector,1I.2*datainpointer->ROW);

/* THE END *

B. 2.7 Listing of JIECON VOL V]. C
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WAVELET RECONVOLUTION SUBROUTINE

/* DATE: 2 July 91
VERSION: 1.0
NAME: reconvolve.c
DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wave2". The algorithm used is referenced in
the description of the main driver module called "main--wave.c.
Data is passed by reference from the reconstruction subroutine. Data is
in ascii format arranged in a square matrix whose dimensions are a
power of 2. This requireme,• has not only made programming more
convenient but is required by the convolution routine from Numeric
Recipes in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)
FILES WRITTEN: NONE (Passed by reference back to the caller.

READERS USED: <stdio.h>, "jsmacros.h"
CALLING PROGRAMS: reconstruct.c

PROGRAMS CALLED: NONE

AUTHOR: Steve Smiley and J. Stewart Laing
HISTORY: Initial Version.

I******************************s*********************

/* DECLARATION SECTION *//*************************/*
#include <stdio.h>
#include "jsmacros.h"

float *vectorO;
float **matrix();
void free vectoro;
void free-matrixO;

/* MAIN PROGRAM BODY */

void reconvolve(dataoutpoi~iter.lhofnpointer .gof.-npointer.c-coefpointer,
dl-coefpointer, d2_coefpointer. d3_coefpointer)
float-array *dataoutpointer;
float-vector *h.of-npointer, *g.of-npointer;
float-array *c.coefpointer,*dlcoefpointer.*d2_coefpointer,*d3_coefpointer;{

/* declare variables */

int i, j;
float-vector rowin,rowout,colin.colouz, response;
float-array temp,templ,temp2,temp3,temp4;
char filename[64];
FILE *outfile;

/* allocate memory *//***************i*i*it/*

temp.ROW = c_coefpointer->ROW*2;
temp.COL c c-coefpoii~ter->COL*2;
'emp.array = matrix(i, temp.ROW, 1, temp.COL);
loopij (temp.ROW,temp. COL) temp. array [i+)] (ir. = 0.0;
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templi~flW =ccoefpointer->RtOW*2;
templ.COL =c-suefpointer->COL*2; *
templ.array = matrix~i, templ.ROW, 1, templ.COL);--
loopij(temupa.ROW,templ.COL) templ.array~i+1J Ej+i) 0.0;
temp2.ROW = c-coefpointer->RDW*2;
temp2.COL = c-.coefpointer->COL*2;I
temp2.array =matrix(i, temp2.RObd, 1, temp2.COL");
loopij(temp2.ROV~temp2.COL) temp2.array[i+1] l?'+i) = 0.0;
temp3.ROW = c-coefpointer->ROW*2;j
temp3.COL = c-.coeipointer->CJL*2;
temp3.array = matrix~i, temp3.ROW, 1, tempa.CaL);
loopij(temp3.RDW~temp3.COL) temp3.array~i+iJ [i) = 0.0;
temp4.ROW =c-coefpointer->ROU*2;
templ.COL = c-coefpointer->COL*2;
temp4.array =matrix~i, temp,4.ROV, 1, temp4.COL);
loopij (temp4.REJW,tern4 .CDL) temp4.array~i+lJ[j+i) 0.0;
rowin.vector = veztor(l,tearp.ROW*2);
loopi(temp.JWW*2) rowin.vector~i41J 0.0;
rowout vector = vector(1,temp.ROWt'4);
loopi(temp.ROWw4) rowout.vector[i+11 =0.0;
colin.vector = vector~l,temp.COL*2);
loopi(temp.COL*2) colin.vector[i+1) 0.0;
colout.vector = vector(1,4*temp.COL);
loopi(temp.COL*4) colout.vector~ii-1) 0.0;
response.vector = vector(1,temp.COL*2);
loopi~temp.COL*2) response. %c~ttor[i+1) = 0.0;

roum .length 4*c-coefpointer->COL;
tU±±l. ±I~gL1 t..coeipointer->nuw;

dataoutpointer-.>RtW =c..soefpointer->ROW*2;
dataoutpointer->COL c-coefpointer->COL.*2;

/* perform convolution *

printf('\nCoavovling cola of c_ coef with lia). ...')
loopi (c-.coef!pointer->COL) {

loopj (c-coelpointer-->ROW)
cc'lin.vector[2*(j+1)] c..coefpointer->array[j+1] [in3;

loopj (coin . length)
response-vector[it1)=hk-stnpointer->vector~jt1);

spconvlv'(colin.vector~colin.length,response.vector,
h-.ot..npointer-->length,1 .colout.vector);

loopj Cc-.coefpointer->ROW*2)
templ.array[j+1] [in)3 = colout.vector[j+11;

} /* zeros are added between each row before convolution *

printf("\nConvovling cola of dl.-coef with g(n). .. 1');
loopi (dl-coefpointer->COL) {

loopj~dI-coefpointer->R0W) colin vector E2*(j+ 1)]
dL-coefpointer->array~j+i) [in);

loopj Ccoli.n .length)
response.vector~ji-1)=g-ot-npointer->vector~j+a);

spconivlv~cohin.vector, coin .length,response-vector,
g-of..npoiniter->length, ±,colout .vector);

loopj(dl-coefpointer->ROW*2) temp2.array~j+1] [i+1) = colout. vector Lj+1);
/ * zeros are added between each row before convolution *

printf("\nCo:ivovling cola of d2_coef with h(n) ...");
loopi~d2-.coefpointer->COL) {

loopj (d2-coefpoiuter->R0W) colir..vector[2*Qj+I1)=
d2-coefpointer->array[j +1] [1+1;

loopj Ccohin.length)
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response. vector [y.1) hsof-.pointer->vectorllj+1J;
spconvlv(colin.vector,colin. length,response.vector,

h..ot-npointer->length,1, colout. vector),
loop) (d2..coefpointer->RDW*2)

temp3.array[j+1) [i+i) = colout.vectorcj+1);
}/* zeros are added between each row before convolution *

printl("\nConvovling cols of d3-soef with g(n). ...)
loopi (d3-coef pointer->COL) {

loopj (d3.soefpointerO>ROV) colin. wector[2*Cjsl)J
d3.soefpointer->array[j+1J [i+ 1);

loop) (colin. length)
response. vector [j+1) =g-otnpointer->vector[j+1J;

spconvlv(colin~vector,colin.length,response.vector.
g..of...pointer->length,1,colout .vector);

loop) (d3-coefpointer->ROW*2)
temp4.array[j+1) (iIi) = co2.out .vector~j+1);

}/* zeros are added between each row before convolution *
/* Add temp arrays for col convolutions 4

loopij(temp.ROW, tenp.COL)
temp.array~i+1J[jp1)= templ.array[i+1) Epi) + temp2.array[i+1) [pi);

loopi) (temp .ROW, tempi . COL)
templ.array~i+1) [j1) = temp3.array[i+1] Ej+1) + tm4aryii[~1

/* sprintf (filename, "taemp") ;
CREAT&.FILE(outf ile, filename, "The Wavelet Analyzer")

I ni(entantoner> l

tprintf~outfile, "11%1\n", temp.array~i-e1] [128));
CLOSE-FILE~i, filename, "The Wavelet Analyzer", outride)

sprintf(filename, "temp"l) ;
CREATE-FILE(outfile, filename, "The Wavelet Analyzer")
loopi Cdataoutpointer->Rtil/2)

fprintf~outfile, "'/,f\n"', tenpl.array~i+I) [128));
CLOSEJFILE(i, filename, "The Wavelet Analyzer", outfile) 4

printf("\nConvovling rows with h(n) ...")
loopi Cdataoutpointer->ROWA

l~oop) (dataoutpointer->COL/2) rowin . vector(C2* (j+01) = temp.array Ci+1J [jo-i);
loop) Crowin.length) response. vector[j+1) h..of..npointer->vector[jtl);
spconvlv(rowin. vector,rovin.length,response .vector,

h-of..npointer->length,1 ,rowvut .vector);
loop) (dataoutpointer->ROW) temp2. array~iti) [jtl) = rowout .vector[j+O1;
}/* zeros are added between ench col before convolution *

printI("\ntConvovling rows with g~n) ...7)
loopi(dataoutpointer->ROU) {

loopj(dataoutpoiziter->COL./2) rowin. vector [2*(jt+1)) tempi. array Ci+1) [j +1);
loopj (colin.length) response. vector~j+1) g..of..npointer->Vector[j+1);
spconvlv(rowin.vector ,rowin.length~response vector,

g-of..npointer->length, 1,rowout .vector);,
loop) Cdataoutpointer->ROW) temp3.array[ii) [jpi] = rowout.vector[j+1);
} /* zeros are added between each row before convolution *
/* sprintf(filenamo, "temp2'2u;
CREATEJFILE(outfile, -filename, "The Wavelet Analyzer")
loopi (dataoutpoi~nter->ROW)

fprintf~outfile, 11Xf\n", temp2.array[i+1J [128));
CLOSE3FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf~filenazue, "temp3");
CREATE-FILE(outfile, filename, "The Wavelet Analyzer")
loopi (dataoutpointer->ROW)
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fprintf(outf ile, "%f\n", temp3.array[itl) E128J);

CLOSEJFILE(i. filename, "The Wavelet Analyzer", outfile) *
1* Add temp arrays to get resulting dataout *
loopij (dataoutpointer-->ROW,dataoutpointer->COL)

dataoutpoiuter->axray~i+1J [j+1] = temp2 .array~i+1J [j+1) +
temp3.array~i+1) (j+IJ;

/* sprintf (filename. "'dataout");
CREATE-FILEC~outf ile, filename, "The Wavelet Analyzer")
loopi (dataoutpointer->ROW)

fprintf(outfile, "%f\n". dataoutpointer->array [i+1J [128]);
CLOSEJFILE~i, filename, "The Wavelet Analyzer", outtile) *

/*loopij (dataoutpoixater-->ROW,dataoutpointer->COL)
printf("dataoutpointer->arrayf4.dJ E~d) %~f\n", iii,j-i-,

dataoutpointer->array[itlJ Cj+l1));*/

/* reset row and col indeces. */
t!l-coefpointer->ROW= dataoutpointer->ROW;
di-coefpointer->COL = dataoutpointer->COL;
d2-soefpointer-flUJW = dataoutpointer->ROW;
d2-.coefpointer->COL = dataoutpoint er->COL;
d3-coefpointer->RLJW = dataoutpo intar->ROW;
d3-.coefpointer->COL= dataoutpointer->COL;

/* free memory */
free..jatrix~temp.array, 1, cscoefpointer->ROW*2, 1 ,c..coefpointer->COL);
free-matrix(templ. array, 1, c...coefpointer->ROW*2, 1 ,c-coefpointer->COL);
iree-aatrixztenp2.array, 1, c..coefpointer->kuW*2, 1 ,c-coelpointer->COL);
free-matrir(temp3. array. 1, c-.coefpointer->ROW*2, I ,c-soefpointer->COL);
lret-matrir(temp4. array, 1, c..coefpointer->ROW*2, 1 ,c-.coefpointer->COL);
free..vector~rowin.vector, 1, 4*dataoutpointer->COL);
free-vecvor(rowout. rector, 1, 8*dataoutpointer->COL);
free-vectnr(colin. vector, 1, 4*dataoutpointer->COL);
free-.vector(colout.vector, 1, 8*dataoutpointer->COL);

B.2.8 Listing of SPCQpNVLVC

WAVLETSPAIALCONVOLUTION SUBROUTINE

/* DATE: 26 July 91

VERSION: 1.0

NAME: spconvlv.c

DESCRIPTION: This subroutine will do a convolution of two time
signalr in the time~domain by means of a shift -mult iply-suim method.
This program intended use is to replace the convlv() subroutine
now being used in the wavelet convolve.c and reconvolve.c portions
of the wave2 program.

FILES READ: NONE (Passed by reference from the caller.)

FILES WRIT-FEN: (Passed by reference back to the caller.)

HEADERS USED: <stdio.h>", "jsmacrot;.h'

CALLING PROGRAMS: decompose.c

PROGRAMS CALLED: rtrutil.c

AUTHOR: Stevre Smiiley and 3. Stewart Laing
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HISTORY: Initial Version.

/* DECLARATIOI SECTION *

*include <stdio .h>
#include "jemacros .h'

float *vectoro;
void free..vectoroC;
void free-.vectorC);

/* MAIN PROGPRAM BODY *

void spconvlv (input, inputjlength, filter, filter~len~th ,dumby,output)

float *input, *ouitput, *f ilter;
int inputjetngth, filter-.length, duaby;

/v declare variables *

int 1, j;
float *temnp, *temp2;

/* allocate mfemory *

CREATEFLOATSVECTOR(temp, 1,2*inputjlength);
loopli(2einput-length) temp[iJ 0.0;

CREATEYFLOATJIECTOR(temp2, 1, 2*input..length);
loopli(2*input..length) temp2Ei] = 0.0;

/* diagnostic print statements *

/* printfC"\n filter length is %d", filter§length);-
print! ("\n input length is %,d", ±nput-length); *

loop ii(2*inxputjlength)
outputri = 0.0;

/* load first level, coefficients .

loopi ±(input-length/2){
temp[i + filter-length -1) iriput~t);

/*printf("\n i= %d,. temp[i + filter-length/2]
=7,f", i. temp~i + filter-.length/2)); */

1* fill in both ends of vector with flip of iwa- *1

loopli(filterjlength -i){
temp[filter-length - ii = tempifilter_.lergth + 1);
temap Eiltor-.length -1 + inputjlength/2 + iJ

tempEfilter-length -1 + input-jlength/2 -i~J
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/* convolution of signal *

loopli(inputjlength/2 + 1 ilter-length -iYC
looplj(filter-jength)
temp2Ei) += ternpfi+j-1J *tilter[j);

/* load proper convolution coefficients

loopli Cinput-.length/2)
output [i) = ternp2t f ilterjlength/2 + i];

free-vector(tenp.1 ,2*inputjlength);
tree~yector~temp2, 1,2*inputjlength);

/* print! r\n i = %/d,output=%/f",i, output~i]); *

B.2.9 Listling of NRUTIL.C (See Appendix P.2) [13]

B.2.1O Listing of JSAIA6BOS.H (See Appendix F.2)

B. 2.ii Listing of STEWM4ATH".H" (S-ee Appendix F.2)

B.2. 12 Listing of MAATEFILE]

*Make! ile routine for the wave2 program by Laing and Smiley.

DEFLAGS = -g

OBJS = main-wave.o loadimage.o filters.o convolve.o spconvlv.o\
decompose.o reconstruct.o ruconvolve.o nrutil.o

spwave2: $COBJS)
CDecho "linking ..

cc $(OBJS) -o vave2 $(DEFLAGS) -lm

main-wave .0: main-wave. c
cc -c $(DEFLAGS) nain-wave.c

loadimage a: loadiags. c
cc -c $(DEFLAGS) loadimage.c

lilters.o: filters-c
cc -c $CDEFLAGS) filters.c

spconvlv .0: spconvlv . c
cc -c $(DEFLAQS) spcanvlv.c

convolve.o: convolve.c
cc -c SCUEFLAGS) convolve.c

reconvolve .o: reconvolve. c
cc -c $CDEFLAGS) reconvolve.c

decompose .o: decompose. c
cc -c $(DEFLAGS) decompose-c
resonstruct .o: reconstruct .c
cc -c $(DEFLAGS) reconstruct.c
nrutil.O: nrutil.c
cc -c $CDEFLAGS) nrutil.c
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B.3 1D System Description

The following is a list of functions which comprise the wavel program.

1. main-wavel.c - The main driver program for wave.

2. loadsignal.c - A routine to load the input signal from an ascii data file.

3. decomposel. c - A routine that controls the decomposition.

4. reconstruct 1. c - A routine that controls the reconstruction.

5. filters , c - A routine that provides the coefficient values of the h(n) and g(n) response

functions (See Appendix B.2 for listing).

6. convolvel.c - A routine that controls the convolutions for decomposition.

7. reconvolvel . c - A routine that controls the convolutions for reconstruction.

8. spconvv, r - A routine that performs the spatial convolutions (See Appendix B.2 for

listing).

9. makefile - A makefile that is used to compile and link the source code to make an

executable file.

10. j smacros .h - An include file that contains macros we found useful in our programming

environment. This file must be present in the directory where compilation takes place

(See Appendix F.2 for listing).

11. stewmath.h - An include file containing some math routines specific to our program.

It must be present in the directory where complilatl)I takes place (See Appendix F.2

for listing).

12. nrutil.c - Source code that contains utility macros for dynamic memory ailocation

(See Appendix F.2 fer listing).

Typing "make" at the command prompt in any directory with all of the above files present

will create the appropriate object code and an executable file called warn) that may be
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executed by typing "wave1" at the command prompt.

The intended input to the program is a Id signal in raw ascii format in which each

sample of the sign'- ;s stored in a file, one number per line. For example, a signal that is

512 samples will consist of 512 lines each with one decimal integer number representing the

value of that sample. The output of the program are ascii files representing the scale and

detail wavelet coefficients in floating point format. For an in depth explanation of the these

coefficients and the algorithm, see the author's theses. The algorithm implemented in this

program is taken from a paper by Stephan Mallat. The paper is referenced in the :uthors

theses. Be aware that we found some printing mistakes in the paper which are addressed in

our theses. The program was developed on Sun sparcstation 2's. But, it should compile on

any system with an ansi standard C compiler. To compile the program, type make at the

command prompt with the default directory set to the current directory. Object files will

then be created and linked into an executable file called wavel. Then to run the program,

type wavel at the command prompt. A menu should appear first with four choices. If not

done at the command line entry into the program, a file must be loaded from the current

directory before either decomposition or reconstruction can be executed- Once a file is

loaded the Decomposition can be selected. Then the Reconstruction c%n be selected. The
Reconstruction nortion deperidfs n f1,,• ,o ... t.. h, th0 Decomnostin nortnr.-: ... t ,

not necessary to run the Decomposition during the same session as the Reconstruction as

long as the Decompostion was run in a prior session and the files still reside in the current

directory. An alternate way to start the program is to type wavel followed by the name of

the input file and its size. The size of the input file must be a power CA two. At this time

the largest file used is a 512 sampled signal. It is possible to specify the path to an input

file that is not in the current directory either relative to the curreut directory or absolutely

from the root. However, if this is done, the output files will be sent to that saime directory.

To review the usage of wavel is

command prompt: wavel [infilename] [size]
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The infilenaite and size are optional but if the infilename is given its size along one-

dimension of the power of two sampled signal must be given as well.

Also, only one file may be input in any one session. This fact is not obvious from the

program menu, so be aware. If you try to select the Load signal option from the main menu

after you have already loaded a file, the result has not been fully characterized. In other

words, we haven't tried to figure out what would happen. This menu option is provided as

an alternative to specifying the file on the command line.

The filters available are presently limited to the some of the Daubechies \\%tvelets and

the Cubic Spline wavelet. But it is a simple process to add new filters to the filters.c program

in the same fasion as those already included. To generate the II and G filters, see our theses

for referenceýs.

B.4 iD Muitiresolution Wavelet Analysis Software

B.4.1 Listing of MAIN- WAVEI.C

/***************I**********z**v**.i*********************************** ********/*
WAVELET ANAL**ZER MAIN PROGRAM DRIVER

/* DATE: 09 April 91, 18 June 91, 16 August 91
VERSION: 3.0

NAME: main-wavtl .c
DESCRIPTION: This program performs a multiresolution wavelet analisys
of an input signal with a wavelet from its internal library chosen
interactively by the user. It handles the menu interface with the
user and drives the subroutines that take input, analyze, produce
output. The tie wavelet decomposition algorithm is a pyramid algorithm
proposed by Stephan Mallat in A Theory for Multiresolution Signal
Dscompowition: hile Wavelet Representation published in IEEE Trans.
on Pattern Anal. and Machine Intel. July 89. The algorithm uses a pair
of mirror filters derived from the scaling function, phi(x). The user
may enter the intended input signal file from the command line following
the calling command 'gavel' or the user may wait to be prompted for
the input file name and size after starting the program with the same
command.

FILES READ: NONE (A subroutine reads the input files.)

FILES WRITTEN: NONE (Subroutines write out the saved data in files.)
HEADERS USED: <stdio.h>, "jsmacros.h", "stewmath.h"
CALLING PROGRAMS: NONE
PROGRAMS CALLED: signalload. c, reconstructi . c, decomposel . c
AUTHOR: Steve Smiley and J. Stewart Laing
HISTORY: Initial Version; adapted from phivl.c and haarvl.c
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Version 2.0 was a rewrite to change the basic algorithm from the using
inner products to using the Mallat algorithm referenced above.
Version 3.0 adapted the two dimensional program for one
dimensional signals.

/* DECLARATION SECTION *1

#include <stdio.h>
#include "jsmacros.h"
#include "stewmath.h"
int-vector loadsignal();
void reconstructC);
void decomposeo);

/* MAIN PROGRAM BODY *1

void main(argc, argv)
int argc;
char *rgv[]f;

/* initialize variables */

Jnt seAertinri
int-vsctor signal, *signalpointer &signal;
char filename [64);
*************.***********s~~~*s*****s**st/

/* load image to be analyzed */

if(argc != 3 U& argo 1)f
printf("Usage: wavel <filename> <# of Samples>\n");
exit(O);}

if(argo == 3){
signal = loadsignal(filename, argo, argv);
/*printf("returned from boadimage"); fflush(stdout);*/

do {

/* display menu */
/ ******.•****•***********************

printf("\n\n MAIN MENU\n\n");
printf(" 1 = Load a new signal from disk.\n");
printf(" 2 = Perform Wavelet Deconposition.\n");
printf(" 3 = Perform Wavelet Reconstruction.\n");
printf(" 4 = Exit Program.\n\n");
printf(" Enter an integer (1-4):");
scanf("%d", &selection);

if (selection == 4) break; /* Quit program */
argo = 1;

if (selection 1) signal = loadsignal(filename, argc, argv);
else if (selection == 2) decompose(signalpointer, filename);
else if (selection 3) reconstruct(signalpointer,
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filename)-;

else {
printf("l \n\n Just enter an integer from 1 to 4 and");
printf("press return. \n");

I while (selection != 4);

/* THE END 41

B.4.2 Listing of LOADSICNAL.C

WAVELET ANALYZER LOADIMAGE ROUTINE

/* DATE: 10 April 91, 16 August 91

VERSION: 2.0
NAME: loadsignal.c
DESCRIPTION: This routine loads an signal into an vactor whose name is
specified by the user interactively. It is intended to be used as a
subroutine for the wavel program.
FILES READ: One file specified by the user.
FILES WRITTEN: NONE

HEADERS USED: <stdio.h>, <stdlib.h>, "jsmacro5 .h"
CALLING PROGRANS: main-tavel.c
PROGRAMS CALLED: nrutil.c
AUTHOR: Steve Smiley and J. Stewart Laing
HISTORY: Version 1.1 was changed to accept square matrices

only.
Version 2.0 changed the two dimensional program to
accept only one dimensional signals. The new
executable it called wavel vs wave2 for the old
one.

1* ** * ** *** * **** * ** * * * * ~* I
/* DECLARATION SECTION *//*************w***s**** **/**

#include <stdio.h>
#include "jsmacros.h"

int *ivectoro);
void freejivectoro;

/* F'JNCTTON BODY */
*** * **** *A* * ********

int_vector 1- dsignal(infilename, argc, argv)
char *infilename[64];
int argc;
char *argv[];{

/- initialize variables *1

irit ij;
FILE kinfije;
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int-vector signal;

/* create vector to hold the incoming signal */

if(argc == 1){
printf("\n\n Input filename of singal to be analyzed:");
scanfC("%s", infilename);
printfC"\n\n Input the number of Samples in the signal");
printf("\n data file. (The number must a power of 2):");
scanf ("%d", &signal. length);}

else {
sprintf(infilename, "%s", argv[1]);
sscanf(argv[2], "Yd", &signal.length);

signal.vector = ivector(1, signal.length);

/* load signal to be analyzed */

OPEN-FILE (infile. infilename, "The wavelet analyzer");
loopli(signal.length)

fscanf(infile,"%d", &signal.vectorIi));
CLOSEFILE (i, infilename, "The Wavelet analyzer", inmile)
printf("\n ** The signal. 's has been loaded for processing. **\n\n\n",

infilename);return signal;

B.4.3 Listing oJ DECOMPOSE1.C

WAVELET DECOMPOSITION SUBROUTINE
/******' *****4'***********************************4*s*************************/*

/* DATE: 19 June 91, 16 August 91

VERSION; 2.0

NAME: decomposel.cc
DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel". the algorithm used is disccssed in
the description of the main driver module called "main-wavel.c.
Data is passed by reference from the main driver module. Ihe data is
in ascii format arranged in a vector whose dimension is a
power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numerical
Recipes in C; The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)
FILES WRITTEN: Two coefficient files at each level of analysis.

The file names begin with the input signal filename
and end with an extension of the foim ".nX" where
r. is an integer that represents the level, X is one

of the letters 'c' or 'd' to represent phi
or psi coefficients respectively.
HEADERS USED- <stdio.h>. "jsmacros.h"

CALLING PROGRAMS: main-wavel.c
PROGRAMS CALLED: convolvel.c, filters.c, nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing
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HISTORY: 2 iitial Version.
Version 2.0 no longer uses the Fourier domain filtering. Now
only spactial convolution is done. Also, this version was
adapted from the two dimensional version 1.0.

/* DECLARATION SECT1MI *

#ir~clude <stdio.h
#include "j smacros ."
void convolve(,;
void filter-so;
float *vectorO;
void free..yectoro);
t t *ivectorC);

1* MAIN PROGRAM BOJY /

void decompose(signal.pointer. intfilename)
int-vector *si.gnalpointer;
char infiiename[];

1* declare variabfles *

int i, j, k, marlevel, wavelet-.type;
floav..vector h-ofn, n..ot~ntiipo, g-oI-n, g-ofjitlipo, phi, IphifliPO;
float-vector phiflipc, *phiflipcpointer =&phiflipc;
f loat-vector *h-otnpointer = &h-uf-n, *h-ot-nflipopointer = &h-of-.nflipo;
float-vector *g-otfjpointer = tg-.of-n, *g-o1 nflipopointer = &g..of-nflipo;
float-vector *phipoi.nter = &phi, *phiflipopointer &phiflipo;P
float-.vector c-coef, d-coet;
float-vector *c-soefpointer= &c-cocf,*d..coetpoxnter= &d-coet;
float-vector temp. *temppointer =&temp;
FILE *outfile;
char filename [642, wave-code[64];
mnt-vector newsignal, *newsignalpointer =&newsignal;

/* allocate mtemory 4

temp. length = signialpointer->length;
temp.vector = vector(1, temp.length);
loopli(temp.length) temp.vector[iJ = 0.0;
c .coef .length = signalpointer->lemgth;
c-.coef.vector = vector(i. c..coet.length);
loopli(c-coef.length) c-.coef.vector[i) = 0.0;
d.-c'eI. length = signalpointe~r->lemgth;
d-coef.vector = vector~i, cbcoef~length);
loopli(d&coef.length) d-coef.vector[i] 0.0;
newai gnal .length = signalpointer->length;
newsignal.vector = ivector(1, newsignal.length);
looplIi (news ijliali. length) news ignal. vector [iJ = 0;
h-.of-n.vector = vector(1,signalpoimter->length*2);
loop1i (s ignalpoint er->length* 2) h-of n.vector [i) = 0.0;
g-of-n.vector = vector (1, signalpo inter-.tlength*2);
loop1i (s ignalpointei ->1length *2) g-of n. vector [i] = 0.0;
h-of-nflipo.vector = vector~l,signalpointer-->length*2);
loopIi (s ignalpointer->length*2) h~ot _nf lipo. vector Lil = 0.0;
g-ofnflipo.vectorz vector(i.,signalpointer->length*2);



loopli(signalpointer->length*2) gst..nflipo.vector[i] = .0;-
phi .vector =vector( 1,2*signtalpointer->length);
lcoopli(signalpointer->length*2) phi.vector[i] = 0.0;
phiflipo.vector = vector(i ,2*signalpointer->length);
loopli(signalpointer->length*2) phiflipo.vector~i) 0.0;
phiflipc.veclzor =vector(1,2*signalpointer->lenfth); 00

1* display menu *

printf("\n\n DECOMPOSITION ME1IU\n\n");
printf(" 1 Piece-wise Constant.(NA)\n");
printf C" 2 = Piece-wise L4.near.-(N/A) \W');
printf(" 3 = Daubechies N=2 \n"t);
Printf C" 4 = Daubechies l&=3.\n"1);
printf(" 5 = Daubechies NA4.\nl);
printf(" 6 =Daubechies N=S.\n");
printf(" 7 =Daubechies N=6.\n");
printf C" 8 = Daubechies N=7.\n");
printf C" 9 = Daubechies N=8.\n"1);
printf(" 10 = Daubechies N=9.\n");
Prix~tf(" 11 = Daubechies N=10.\n");
printf(" 12 = Splines.\n");
printf(" 13 = Morlet.(N/A)\n");
printf ("\n Enter ant integer 1-13:')

scanf("'/,", &wavelet~type);
/ft error ha-ndling for invalid input

if (wavelet-type < 3 11 wavelet..type > 1.3){
printiC"\nYou have chosen an Invalid Wavelet type or");
printfC"\nthis type is not currently available.");
I /* end if *

else{

/* Set wave~sode for use in outpat filenames. *

if (wavelet-type = 3) sprintf(wave-.code, "'db2");
if (wavelet-type 4) sprintf(wave..code,"d ')
if (wavelet-type ==5) sprintf~wave-code, "Idb");
if (wavelet-type ==6) sprintf~wave..code. "dbC");
if (wavelet-.type ==7) spriutf~wave-code, "db6"'),
if (wavelet-type 8) sprintý(wave~code, "db7");
if (wavelet-.type ==9) sprintf(wave-coae, "ldb8");
if (wavelet-type ==10) sprintf(wavsi..code, "db9');.
if (wavelet-type 11) sprintf~wave-sode, "db3'");
if (wavelev.,type ==12) sprir~tl(vave-ccode, "opi');

1* Generate Phi and Fx2.ters *

filters Cwavelet.Aype~h..of. npv)inte*r,g,-f.cz.poiniter,p-Iipo)initer);,
flipo(phipointer, phitiipopcuxnter);

h-of nfl1ipopo inter =h-of, npointer;
g-ofnflipopointer= g-of-j.upointer;

looplIi (s igna].pointnr->engt~h)
temppointor->vet tUT Ei) fotsgapi;r>etrJ

/**
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/* Call convolution routine and save the coefficient vectors for */
/* each level of analysis.

maxlevel = LOG2(signalpoiriter->length); /* Calculate the highest level *1
k=1;
loopk(maxlevel){

if (temp~length >= hofn.length){ /* signal has to be bigger than filter */
printf ("\nPerforming convolution with filters, level");

printf("%d... .", k+1);
convolve(temppointer, hsof_nflipopointer, gsof-nflipopointer,
ccoefpointer, d.coefpointer);
sprintf(filename, "%s.%d.c.%s", infilename, k+l, wave_.code);

CREATEFILE(outfile, filename, "The Wavelet Analyzer")
loopii(c_¢oef .length) fprintf(outfile, "%f\n", c_coef vector[i]);
CLOSEFILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf(filename, "Yas.%d.d.'s", in! ilename, k+l,wave-code);
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopli(dcoef.length)fprintf(outfile,"Yf\n",d-coef.vector[i]);
CLOSEFILE(i, filename, "The Wavelet Analyzer", outtile)
temp.length = c-coef.length;
loopli(temp.length) temp.vector[i] = c-coef.vector[i];

} /* end if */
} /* end loop */

1 /* end else */

/* free memory *I

tree_vector(temp.vector, 1, temp.lcngth);
freesvector(c_coef.vector, 1, c-coef.length);
free-vector(d-coef vector, 1, d-coef.length);
freevector(h_of-n.vector,lsignalpointer->length'2);
free.vector(g-o!_n.vector,l,signalpointer->length*2);
freevector(phi.vector,l,signalpointer->length*2);
free_veutor(phiflipo.vector,l,signalpointer->length42);
free_vector(phiflipc.vector,l,signalpointer->length*2);

/* THE END */}

B.4.4 Listing of RECONSTRUCTIC

WAVELET RECONSTRUCTION SUBROUTINE

/* DATE: 2 July 91, 16 August 91
VERSION: 3.0

NAME: reconstructl.c
DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel". The algorithm used is discussed in
the description of the main driver module called "main-wavel.c.
It controls the portion of the program that reconstructs a previously
decomposed signal using Mallat's multiresolution algorithm referenced
in the description of the calling program, "main-wavel.c".
FILES READ: Four coefficient files at each level of analysis.

The file names begin with the input signal filename
and end with an extension of the form ".nX" where
n is an integer that represents the level, X is one of
the letters 'c' or 'd' to represent phi or psi coef-
ficients respectively.
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FILES WRITTEN: One tile with the extension ".rec" -

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: main-vavel.c

PROGRAMS CALLED: filters. c, recoavolvel .c, spconvlv. c, arutil .c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version.
Version 2.0 is adapted to use the spatial correlation and not
the Fourier convolution.
Version 3.0 adapted the two dimensional program to handle only
1 dimensional signals. The command is wavel vs wavre2.

/* DECLARATION SECTION 4

#xnclude <stdio .h
#include "jsmacros .h"

void tilterso;
void reconvolveoC;
float *vectoro);
void tree-.vectoro);

jut *ivectoro;

void tree-ivectoro;

void reconstruct~signalpointer, in! ilename)
int-vector *signalpointer;
char infilenace[];

/* declare variables *

int i, j, k, 1, marlevel, wavelet-type;

f loat-vector g-of-nflipo. g..oi..ntlipc. phi, phiflipc;
float-.vector *h-otnpointer = &'h.ot-n, *tgot-npointer k-fn
float-vector th.-otnflipopointer = *h-.of-nflipo;
float-.vector *g..of..nflipopointer = Ag-of-nflipo;
f loat-.vector *h-.ot-nflipcpointer = Ah..otnflipc;
f loat-vyector 4g-ot-nlipcpointer = tg..o1..nflipc;
float-.vector 4'phipointer = &phi, *phiilipcpointer = &phiflipc;
float-.vector c-coef, d~coef,
float-vector *c..coefpointer= &ccoef ,*d..coefpointer= &d-.xoef;
f loat-.vector temp, 4temppointer = &temp;
intsvector neil ignal.' *newsignalpointer &newsignal;
FILE 4'outfile, *infile;
char Iilename[64J, wave..code [64);
float holder[64];

/* allocate memory

temp. length =signalpointer->length;
temp.vector = vector~i. temp.length);
loopli(temp.length) temp.vector~i) = 0.0;
newsignal .length = signalpointer->length;
newsignal.vector =ivector~i, newsignal.length);
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).oopi i(news ignal. length) nevs ignal. vector Ei) 0.0;
.c~soef .length = signalpointer->length;
ccsoef.vector = vector~i, c-coet-length);
Tloopli~c-coef. length) c-coef vector [iJ = 0.0;
d..coef .length = signalpointer->length;
d..coef.vector = vector~i, d..coef.length);
loopli~d~coef .length) d~coef .vector[7i) 0.0;

li-of_n.vector = vectorC1,signalpointer->length*2);
).oopli~signalpointer->lon~gth*2) h-ostn. vector [iJ 0.0;
g-st-n.vector = vector(1 ,signalpoiater->length*2);
loopli iGignai~pointez->length*2) g..otun.vectorti) 0.0;
phi.vector =vector(l,2*signalpointer->length);
loopii(signalpointer->length*2) phi.vector Li) 0.0;
phifli pc .vector = vector(1 ,21signalpointer->length);
.oopli~signalpointer->length*2) phiflipc.vectorli] ,= 0.0;
h-.ot-ntlipo.vector = vector Ci,signalpointer->length*2);
loopli~signialpoiniter->l-ength*2) }uof..nel.4po. vector Ci) 0.0;

g,.ofjiflipo.vector = vector~i .signalpoirnter->length*2);
loopli(signalpointer->length*2) g_.otuf lipo. vector Ei) = 0.0;
h-otnflipc. vector vector~i ,si~gnalpointer->length*2);
].oopli(signalpointer->length*2) hstf-nflipc.vector [ii = 0.0;
gstutnlipc. vector =vector~i ,signalpointer->length*2);
loopli(signalpoint~er->length*2) g..otnflipc.vector~i) = 0.0;

/t display menu *

printr(-\n\n RECOISTRUCTIDI MEIU\n\n");
printf(" 1 = Piece-wise Constant.CIA)\n");
printf(" 2 = Piece-vise Linear.(NI/A) \n");
printf(" 3 = Paubechies N=2.\n1);
printf CI 4 =Daubechies 1=3.\n"6) ;
printf("l 5 = Daubtchies 14.\n") ;
printf(" 6 Daubechies N=5.\n") ;
printf(" 7 Daubechies N=6.\n");
printf(" 8 =Daubechies =7.\n");
priutt(" 9 =Daubechies Y=8\n");
printf C" 10 Daubechies N=9.\n");
printtC' 11 Daubechies N=10.\n");
printf(" 12 Splines.\n");

priutf( Erter an integor (1-13):");

scant C '7", ftavelet.-type);

±i(uavelet-sype < 1 11 wavelet-type > 13 ){
pr:Zztf&'\nYou have chosan an invalid wavelet or");
printf{An\it is not currently available.");

else {

ftSet value of wave-code for input filename *

if (wavelet.type 4= ) spiintf(vave~code. "db2");
if (wavelet...type 4) sprintt(vave..code, "%W');
if (wavelet-type ==6) sprxntt(vave-code. "db4");
if (wavelet-.type 7= ) sprintf(vave-code, "db5");
it (wavelet..type 7) sprintt(vavescode, "db6");
if (wavelet-.type 9) sprintt(vave..code, "6b7");
4if (wavelet-type 10) sprintf(wave..code, "Idbs");
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if (wavelet-.type ==11) sprintf(wave-sode. "dbO"');
if (wavelet-type 12) sprintf~wavescode, I'spi"l);

/* Generate Phi and Filters *

filters~wavelet~typeL-ot-npointer,g-of-ipointer,phipointer);

1* ~flip the filters a

loopij (hstfnpointer->length)
holder Eh~osnpointer->length +1 -jJ= h-of-ipointer->vector~j);

looplj (hstfnpointer->length)
h-.ot-npoirtter->vector[j] = holder~ji;

loopij (g..otnpointer->length)
holder~g-otnpointer->length +1 -jJ= g-ostnpointer->vector~j);

looplj (g-.of-.npoi~nter->length)
g-.of-.npointer->vector~jJ = holder U);

h-of-nflipcpointer= h-.ot-npointer;
gstfnflipcpointer= g-otnpointer;

/t Call reconvolution routine to reconstruct from coursest phi a
ft coefficients and all of the psi coefficients. *

marlevel = LOG2Csignalpointer->length);/*Calculate the highest level*/

temp.length = 1;

do { / make sure signal is bigger than filter"f
temp.length *=2;
--maxlevel;
} while (temp.length < -of-n.lengthf2);

c-coef.length = temp.length;
(1-coef.length = temp.length;
I = 1;

for(k=maxlevel ;k>O ;--10 {
iI(l ==W

sprintf(filenazne, "'As.%d.c-%s", infilename. k.wave-code);
OEILFILE(infile, filename, "The Wavelet Analyzer")
loopi i(c-coef length)

fscanf(infile, "%f\n", kc-coef.vector[i));
CLOSE-,FIL.E(i, filename, "The Wavelet Analyzer", in! ile)

1 =0;
I /t end if a

else {
c.-oef.length =temp.].ength;
loopli(c~coef length) c..coef vectorlijl = temp.vector [ii;

1/t end else wc/
sprintf(filenane, "%/s.7d-d.%s". in! ilename, k,vave-code);
OPEILFILE Cinf ile, filename, "The Wavelet Analyzer")
loopli(d-coef length)

fscanf(infile, "Xf\n", &&-coef.vector[i));
CLUSESFILE(i, filena-me, "The Wavelet Analyzer", infile)

prantf ("\nPerf orming reconvolution with filters, level 'U..- ." k);
reconvolve(temppointer, h-.of..nflipcpointer, g-ot-nflipcpointer,

c-coefpointer, t~coefpointer);

if(wavelet..type ==12)
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loopli(temp.length) temp.vector[i] *= 2;
sprintf(filename, "%s.%d.c.%s.rec', infilename,k-1,wavecode);
CREATEJFILE(outfile, filename, "The Wavelet Analyzer")
loopli(temp.length)

fprintf(outfile, "'f\n", temp.vectorci]);
CLOSEJFILE(i, filename, "The Wavelet Analyzer", outfile)
S-1* end loop */

} /* end else */

/* free memory */

freeyvector(temp.vector, 1, temp.length);
freeivector(newsignal.vector, 1, rewsignal.length);
freevector(c-coef.vector, 1, c coef.length);
free-vector(dccoef.vector, 1, d_coef.length);

/* THE END */
}

B.4.5 Listing of FILTERS.C (See Appendix B.2)

B.4.6 Listing of CONVOLVEI.C

WAVELET CONVOLUTION SUBROUTINE

/* DATE: 19 June 91, 16 August 91

VERSION: 2.0
NAME: convolvel.c
DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel". The algorithm used is discussed in
the description of the main driver module called "main-wavel.c".
Data is passed by reference from the decomposition subroutine. Data is
in ascii format arranged in a vector whnre dimension is a
power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numerical
Recipes in C: The Art of Scientific Conputing.
FILES READ: NONE (Passed by reference from the caller.)

FILES WRITTEN: (Passed by reference back to the caller.)
HEADERS USED: <stdio.h>, "jsmacros.h"
CALLING PROGRAMS: decomposel.c
PROGRAMS CALLED: spconvlv.c, nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing
HISTORY: Initial Version.
Version 2.0 was adapted from the two dimensional version 1.0
to handle one dimensional signals. It does not use the Forier
space filtering indicated above.

/* DECLARATION SECTION *1

#include <stdio.h>
#include "jemacros.h"

float *vectorQ;
void free-vectoro;
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void spconvlvO;-

/* MAIN PROGRAM BODY *

void convolve(dataiapointer, h..oi.npointer ,g-.ol.-npointer, c-coefpointer,
d..coefpointer)
float-~vector *datainpointer;
f loat-.vector *&.of-npointer, *g-ofjipointer;
lloat-.vector ec-.coeipointer, *d-.coelpoanter;

1* declare variables *

int ij
f loat-.vector vectin ,vectout, response;
float-vector temp;
FILE *outfile;
char f ilename (64J;

1* allocate memory *

temp.vector = vector~i, datainpointer->length);
loopli(datainpointer->length) temp.vector~i) 0.0;
vectin.vector = vector(l,2*dat~ainpointer->length);
loopli(2*datainp~ointer->length) vectin.vector[i) = 0.0;
vectout.vector = veCtor(l,4*datainpointer->leng th);

Jnnni~cntnnponte->lngth4) artiit vetoril = 0.0;
response.vector =vec-tor(1,2*datainpointer->length);
loopli(datainpointer->leagthi*2) respontse ,vectorU]l 0.0;
vectin .length = 2*datainpointer->length;

1* perform convolution *

printf("\nConvovling signal with h(-n)...");
looplj (datainpointer->length*2)

response.vector~j] = hatfnpointer->vectorljj;
looplj Cdatainpoirser->length)

vectin.vector~j) =datainpointer->vectorilj);
spconvlv(vectin. vector,vectin .length,response .vector,

h..otnpointer->length, 1,vectout .vector);
looplj (datainpointer->length/2)

c-coefpointer->vector[j] = vectout.vectorE2*j);
/* downasample by selectimy even colas*

printfC"\nConvovling signal withg().";
looplj (datainpointer->length*2)

response.vector[j) = g..ot..npomnter->vecto>rljJ;
looplj (datainpointer->length)

vectin.vector~jj datainpointer->vector[jJ;
spconvlv(vectin.vectcr,vectini.lengthi,rosponse.vector.

g..of-.npointer->length. 1,vectout.vector);
loopij (datainpointer->length/2)

&..coefpointer->vector~1 = vectout.vector[2*j);

1* reset signal indeces. ~
c..coefpointer->length = datainpointer->length/2;
d-coefpoilitter->length =datainpointer->length/2;

/* free menory *
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free-vector(temp.vector, 1. datainpointer->length);
free-vector (vectin.vector,1,2*datainpointer->length);
free-vector (vectout.vector, I,4*datainpointer->length);
free-vector (response.vector,1,2*datainpointer->length);

/* THE END */}

B.4.7 Listing of RECONVOLVEi.C

/****4*4*4*4'*4'**4'**********4'********4'*************4*4'***4*4'*4'4'********4*****/* -

I***' WAVELET RECONVOLUTION SUBROUTINE/**4*4'4'4'**4'********4'*****4s'*s*********** *****4*4***********s*4*s*************** /
I**********4'***********4'************************4***4'******'*************4'***/*
/* DATE: 2 July 91, 16 August 91

VERSION: 2.0
NAME: reconvolvel.c
DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel". The algorithm used is referenced in
the description of the main driver module called "main-wavel.c".
Data is passed by reference from the reconstruction subroutine. Data is
in ascii format arranged in a vector whose dimension is a
power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numeric
Recipes in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)
FILES WRITTen: NONE (Passed by reference bacX to the caller.
HEADERS USED: <stdio.h>, "jsmacros.h"
CALLING PROGRAMS: reconstructl.c

PROGRAMS CALLED: spconvlv.c, nrutil.c
AUTHOR: Steve Smiley and J. Stewart Laing
HISTORY: Initial Version.
Version 2.0 adapted from 1.0 allows only one dimensional
signals to be decomposed. It does not use Fourier filtering.

/**4'*****4'***4*4'*4'4**4'4**4''*4**4'**4*'*'***444*'****'*c'4*'4*4*

/*4P*4'******4**4'*********4*/*I,. nrrr anAfrlA'fnsT SEPTTnY

#include <stdio.h>
#include "jsmacros.h"

float *vector);
void free-vectoro;

/* MAIN PROGRAM BODY /1

void reconvolve(dataoutpointer,hof-npoinverg-of-npointer,
c-coefpointer.d&coefpointer)
float-vector *dataoutpointer;
float-vector *h of.npointer, *g.of.npointer;
float-vector *c-coefpointer,*d..coefpointer;{

/** *******4***********sc**/

/* declare v~riables */

int i, ];
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flJoat..yector vectin,vectout, response;
float-vyector temp,templ.;
char fi Ilename [64];
FILE *outfile;

1* allocate memory *

temp. length = c-.coefpointer->length*2;
temp.vector = vector~i, tenp.length);
loopli(temp.length) temp.vector[i] = 0.0;
temp . length =c-.coefpointer->length*2;
templ.vector =vector~i, templ.length);
loopli(templ.length) templ.vector [11= 0.0;
vectin.vector = vector(1.temp.length*2);
loopli(temp.length*2) vectin.vector~ij 0.0;
vectout.vector = vector(l,4*temp.length);
loopli(temp.length*4) vectout.vector[i] ý 0.0;
response.vector = vector~l~temp.length*2);
loopli~temp.length*2) response.vector[iJ 0.0;
vectini.length = 4* -coefpointer->length;
dataoutpointer->length =c-soefpointer->length*2;

/* perform convolution *

prirntf("\nConvovling cscoef with h~n).. 2');
looplj (c-coefpointer->length) vectin.vector E2*j] = c-coefpointer->vector[jJ;
looplj (vectin .length) respontse.vector~j] hsof-xpointer->vector[j);
spcoflJvivvectin. vector, vectin-lenigtl-iresponse-vector,

h..otnpointer->length. 1,vectout. vector):
looplj(c-.coefpoiaiter-lIength'12) temp.vector[jJ = vectoat.vector~jJ;
1* zeros were added between each row beicre convolution *
printt('\nConvovling d-coef with gn..)
looplj (c-coefpointer->length) vectin.vector E2*j) d-coefpointer->vector[jJ;
looplj(vectin.length) response.vector[jlhg..otsipointer->vectorrj);
spconvlv~vectin.vector,vectin.Jlength,zesponse.vector,

g-.of-npointer-.>length, 1,vectout .vector);
JzoopljCd-coefpoxnter->length*2) templ.v ctortj) =vectout.vector[jJ;
/*zeros are added between each row before convolution *

/* Add temp vectors */

loopii aaovoite ->leiagth)L
dataoutpointer->vector Li] temp. vector E±) + tentp . vector [i];

/* reset vector indeces. *
d-coefpointer->length =dataoutpointer->length;

/* free memory */
free-vector(temp.vector, 1, c..coefpointer->length*1);
free..vector(templ .vector, 1, c-coefpointer->lengtli*2);
free-.vector(vect in. vector, 1, 4*dataoutpointer->length);
Iree-.vector(vectout.vector, 1, B*dataoutpointer->length);-

13..4.8 Listing of SPOON VLV.C (See Appeudix 13.2)

B1.4.9 Lishiny of NRUTIL.,C (See Appendix F.2) [13]



134.10 Listing of JSMIACROS.H (See Appendix F.2)

B-.4. 11 Listing of STEWAIATH.H (See Appendix F.2)

ff4.12 Listing of MAKEFILE

# Mflefil. routine for the wavel program by Laing and Smiley.

DEFLAGS =-

OBJS =maiu-wavel.o loadsignal.o filters.o convo~vel.o spconvlv.o\
decomposel .0 reconstructi .o reconvolvel .0 nrutil .0

spwave2: $(Uejs)
Cecho "linking ...

cc $(OBJS) -o wavel $(DEFLAGS) -la
main-wave 1.o: main--wavel1. c
cc -c $(OEFLAGS) main-wavel.c
loads ignal .0: loads ignal. c
cc -c $(DEFLAGS) loadsignal.c

iilters.o: filters.c
cc -c $(DEFLAGS) lilters.c
spconvlv .o: spcouvlv. c
cc -c $(DEFLAGS) spconvlv.c

convolve 1.0: convolve1. c
cc -c $(OEFLAGS) convolvel.c
reconvolvel .0: reconvolvel. c
cc -c $(DEFLAGS) reconvolvel.c
decomposel.o: decomposel .c
cc -c $(DEFLAGS) decomposel.c

resonstructi o: reconstructi .c
cc -c SCEEFLAGS) reconstructl.c
nrutil.O: nrutil.c
cc -c $(DEFLAGS) nrutil.c
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Appendix C. Software for Utilities

C. I Description of Utilities

The following is a list of the software utilities used in this thesis. It includes Header

files and subroutines that are found in much of the software listed in earlier appendices and

command line programs that filter individual files.

1. j smacros .h - A header file containing macros used widely in the software written for

this thesis.

2. macros. h - A header file containing some macros used early on ia the software of this

thesis.

3. stewmath.h - A header file containing an integer math routine to take the base 2

logarithm of an integer number.

4. asift.c - A program tiat converts an inptt file of float ASCII values, one per line,

to integer ASCII values, one per line. The values are clipped at a minimum value of

0 and a maximum of 255. After conversion and before clipping, the absolute value of

cach number is taken.

5. daub.c - A program used to generate g(n), #(x), and 4'(x) given an h(n). All h(7i.)

values are hard coded and must be entered before compilation. Other input is inter-

active.

6. epsview.c - A program thILL converts an input file from ASCII format in which each

line holds an integer numnber to Lex with an Ecapsulated PostScript header.

7. matr •xtoascii. c- A program that converts a I7horos ASCII output to a file that has

one integer per line [31]. This program strips ofl the matrix coordinates of the values.

S. nrutil, c - A set of utilities provided by Numvericai lccipies in C used in this thesis

mostly for dynamic ieP'ory allocation [13].
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9. threshold.c - A program that thresholds an :nput fle of ASCII values eliminiating a

user specified window of minimum and maximum values. All values inside the window

are set to 255 and all values outside the window are set to 0. This creatcs a black and

white binary representation of ihe input file.

10. rd834 . c - A program to convert raw SAR imagery to a complex format.

11 .ogb.c - A program to convery complex format SAR imagery to a byte format scaled

5aetween 0-255 grey scales and ready for consumption by the Khoros system.

12. extract. c - This program generates data vectors from multiresolutior' decomposition

coefficient files for use in Dan Zahirniak's Radial Basis Function ne,-!ural network.

13. center.c - This program generates data vectors from multiresolution decomposition

coelciornt files for use in Dan Zahi-niak's Radial Basis Function neural network. The

training data is extracted from iarEg, blocks :r areas of the image.

14. normalizeA, c - This program will normalize a set of data, vectors used in the ifBF

netwo-k.

C.2 Utility 5,ft warc'

C.2.1 Listing of ISMACt4C )S.R

Convenient Macros for WAVE jrogram

/*** MACROS ***/

#define CREArEmHTrIXrOW(A,B,C) A = (C **)calloc(B, si.eof(C *))
#define DELETEMATRIXROW(.,C) free((C *) f)
fdefiae CLOSEFILE(A,B,C,D) if((AWflose(D)) == EOF) { \

printf(strcat(C,":file may already be closed - %s.\'"),B); }
#define ;%tEATEMATEXCLtL(AB,CD) for(:i-O; i<B: ++i) A[i] = (D *) \

calloc(C, sizeof(D))
Udefine DELETEMATRIXCOL(A,S,D) for(i=c; i<B; ++i) frea((D *) A[ij)
#define CREATEVECTOR(A,BC) A = (C *)calloc(B, sizeof(C))
#define DELE7EVEC'OR(P) Iree(A)
#def iie loopli(A) for(iýýI.-i<=A;i++)

4deliue locplj(A) for(jrl;j<=A;j++)
#define loopllCA) for(l=1;l<=A;1++)
#def - looplk(A) for(k=1k<=A;k+t)
1Vde. Le lcoplij(A.B) for(=1;i<.;i+) for(j:.;j<=B;j++)
#define looplkl(A,B) fork=1;k<=A;k+4) for(lr=;c<=B;l++)
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#define CREA'iE-FLOAL-VECTORCA,D,C) A =vectorCB.C)

#define CREATETNTVECTOR(A,B,C) A =ivector(B,C)
#de-fine CREATEDOURJ.ETECTOR(A.B,C) A = dvector(B,C)

#define CREATEJFLOATLMATRIX(A.B,C,D,E) A = matrix(B,C,D,E)
#define CREATE3NKTJIATRIXCA.B,C,D,E) A =imatrixCB,C,D,E)
#define CRýAT&.EDOUBLEJIATRIX(kA,b,C,D,E) A zimatrix(B,CD,E)'

struct int-array{
int t'*array;
Ant ROW, COL;

zypedet struct int-array int..array;

struct, float-,array
float **array;
int ROW, COL;

typedef struct float-array I loat-array;

struct phi-array{
float **array;
int ROW, COL;
jnt int4?-J.ls;

typedef struct phi..array phi-array;

struct; float-vector{
float *vector;
jilt length;

typedex struct f loat-vector float-vector;

Li'56t1g of MACI? O1S. C.

Convenient Macros f or Perceptron Package by Capt Creg T~rr

#ifdef LEO
#define REALJZ4T *'%/g"
#else
#define REAL-FMT 11%1Z"
#ezidif
#ifdef NEXT
flundef REAV-FKT
#def ine REAL-FliT "7.2f'
#endx.f

#def 17.e Boolean jut
#d'efine False 0
#defz.ne True 1

/** flominant Senso~r Def initions *
#define SINGLE 0
#define 1'LIR 1
#define RNG 2

/** Mask Dcfinitionoi **/'
#define OFF 0.0
#def ine ON 1.0

char junn-rosponse[2,56J
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#del ine 1..kipjline(A) ftgets (junksresponse, 256, A)
#define skip-line gets (junk-sesponse)

#define rloopj (A) for(j4(A)-1.;j>=0;j--)
#define rloopk(A) for(k4(A)-1;k>=3;k---)
#detine rloopl(A) for(W=(A)-1;l>0O;l--)
#define rloopm(A) for(m=(A)-1;m>=0;m--)
#define rloopn(A) for(nC(A)-1;n>0O;n--)
#d~ef ine rlooppCA) for(p=(A)-1;p>=0;p--)

#define rloopij(A,B) for(i=(A)-l;i>=0;i--) f-or(j=(B)-1;j>0O;j--)
#define loopiCA) for(i0O;i<A;i+I-)
#define loopj (A) foz(j=0;j<A;j++)
#def ine loopk(A) for(k=0;k<A;k++)
#def ine loopiCA) for(1=0;l<A;l++)
#tdefine loopxs(A) for(m=O;m<A;m++)
#define loopn(A) for(n0O;xvA;n++)
#define loopp(A) for(p=O;pczA;p++)
#define ioopij(A,B) for(i=0; i<A;i++) for(j=O;j<B;j++)
#define loopltl(A,B) for(k=0;k<A;k4-+) fcr(1=0;l<B;l++)
#define MALLOC(A,B,C.D) if((A=(C *)malloc(CB)*sizeof(C)))=NKULL){\

fprintf(stderi, strcatCD),": insufficient memory\n") )
exit(-1); }

#definte CREATEJFILE(A,H,C) ift((A=f open (B, "w"))= NULL){\
printiklstrcat(C,": can't open for writing - %s.\n"),B);\

exit (-1); }
#define OPEN-FILE(A,B.C) if((A~foPen(B."r")) == NULL)

printf(strcat(C,": can't open for reading -- %/s.\n"),B);\
exit (-I); }

#define xdx(l,J,fl) (I)*(N)+(J)

/w'* All of these are dependent on the definition of "layer"*/
#define NAXJNPUTS so
#define MAX-NODES s0
#deiine )IAXJ¶13(ODES S0
#define MAX_52_NODES so
#deftine MAX.UUTPUTS 50
#define MAX-VECTORS 1000

#define WflK-TYP&-MSF 2 /* new weights tile *
#define WTSJTYPEJ1 I /* new weights file *
4define WTSJTYPLO0 0 /* old weights file *
#define TRAIN 0
#define TEST 1
*tdefine UIREE-LAYER 3
#define TWO-.LAYER 2

C.2.3 Lllist tug of 5 ',I' 'VA TIE C

/* This is a collection o! functions fur Convenience *

L062 takes the log base two of an integer ancO returns an integer.

int LUG2(x)
mnt X;

int, y = 0;

whil., (x/2 > 0){
x /= 2;

CAI



return Y;

/* The following is not used in, WAVE *

void flipo(inivectorpointe~r~outv.-c~tor-pointeýr)
float-.vector *invectorpoint~er, *outtve ctorpointez;

int i;
int map;
outvectorpointer->length. invectorpoiater->iength;
outvectorpoint er->vector Li)= invectoreoixi.tir-> vector El);
map =invectorpoiater->lengzh -2;

loopi(invectorpointer->length. M)
outvectorpo int er- >vector Ii+21 = lnvecttorpoirnteY ->vector [i+2+mapl;
map -= 2;-

void flipc(invectovtpointer,ouitvezLtorpointer)
float-jrector *:nveccorpoanter, *outvectorpointer;

int i;
loopi(invectorpointcr->length/2 + 1)

outvectorpointer->vector Cinvectoxpoi~ntijr->lIength/'2 +-1. ii
invoctorpointer->vectc,,z fi+i);

outvectorpointer->length = invectorpointer->length;

C.2.3. 1 Listing of A$11FT. C

FLOAT TO 1ATEGER CLIP AND SIFT PROGRAM

/* DA4T!;: 3 Sept 91

VERSION: 1.0

NAME: asi.ft.c

DESCRIPTION: This progra.m converts the nimnbers from ani input file in which
each number is cn a separate line from float to integzer. This process, also
take-- the absc~lute value and clips thec values to stay between a minimum
value of 0 and a rnex~ium value of 255-

TILES READ: One Il specifie~d by the user-.
FILES WRITTEN: Oite file specified by the-, user.

HEADERS USED: tio.h,"i1smacros.h" "nitacros.h", t"stcgmath~h",
<math. h>~

CMLLINIS PROGRAM4S: NONE
PROGRAMS CALLE).: NONE"
AUTHOR: J_ Stewart La.ing and Steve Swiley

*'HISTORY: Initial Version

/* DECLARATION SLCTION *

ltinclude Cstd~ic.h>
*$izclude "macros .h"
#incluldt "jsmacros .h"



#include "at ewmath.hI"
#include cmath.h>

1* MAIN PROGRAM BODY *

void main(argc, argv)
int argc;
char *argv[1;-

/* initialize variables *

f loat-array basis, coef, proj. temp;
int i, j, k, 1, level9 size, shift=i, nevi, newj,newint;
char basisfileEO4j, coeffile[64);
FILE *infilel, *infile2, louttile;

/* test parameters *

if(argc != 4 A& argc i= ){
printf ("Usage: thresl'old <f ilename> <# of rows> <# of Cols>\n");
exit(O);

PROMPT USER

if(argc == O

printf("\n Znter the name of the coefficient file»>");
scanf("Xs", coeffile);
priutf("\n Enter the size of the NXN coefficen array»>");
scanif("CU", &coe 4 .ROW);

els e{
sprintf~coeffile, "%s.s' argv Li]);
sscanf(argv[23, "'%d", Acoef.ROW);-
sscant(argv £3], "Ud", tcoef.COL);

/4 create a matrix to hold the image *
I* **44*4***4***4**4*.**

coef.COL coef.ROW;
CREATEMATRIXROW(coef.array, coef.ROW, float);
CREATEMATRIX-CUL(coet -array, coot. ROW. coot .COL, float);

1* open input file

OPEN-FILE (infilel, coeffile, "The projection program");
loopij (coef .ROW, coot .COL)

fscanf(infilei."Xf', kcoef.arrayliJ Lj)),
CLOSEJ'ILE (i. coeffile, "The projection program ", intilel)
printf ("\n ** The image %~s has been loaded for processing. **\n\n\n',

coeffile);

1* OUTPUT PROJECTION *
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CREATE-FILE(outfile, "sifted", "The Projection Program")

loopij(coef.ROW, coef.COL){

newint = abs((int)(coef.array[i][j]));
if (newint > 255) newint = 255;
if (newint < 0) newint = 0;
fprintf(ontfile,"%d\n", newint);}

printf("The projecti-n file has been completed\n");

C.2.4 Listing of DAUB. C

WAVELET GENERATOR PROGRAM */

/* DATE: 3 Sept 91

VERSION: 1.0

NAME: daub.c

DESCRIPTION: This program genoratez; the g(n), phi~i), and psi(x) from
a given h(n). The values of the h(m) are hard coded c.td must be ret
before comilation. Depth of recursion and type cf wavelet are chonsln
by the user interactively.

FILES READ: NONE

FILES WRITTEN: one file each tor g(n), phi(x), and psi(r)

HEADERS USED: <stdioh>, "jsmacros.L" , "macros.h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: J. Stewart Laing and Steve Smiley

HISTORY: Initial Version*/

#include <stdio.h>
Sinclude "macrno.h"
#include "jsnacros.h"

float H(Nn)
int N,n;{

ifkN == 2){
if(n 0) return .4829629131;
:f(n 1) return .8365163037;
if(n =2) return .2241438680;
if(n 3) return -. 1294095226;
else return 0.0;I

if(N == 3)f
if(n 0) return .3328705530;
if(n 1) return .8068915093;
if(n =2) return .4598775021;
if(n 3) return -. 1350110200;
if(n == 4) return - 0854412739;
if(n == s) return .0352262919;
else return 0.0;
I

if(N == 4)f
if(n == 0) return .2303778133;
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if(n = return .7248465706;
if•n 2 2) return .63C8807679;

(n== 3) return -. 0279837694;
if(n == 4) return 7.1870 3 4 811 7 ;
it(u 5) return .0308413818;
i'(n 6) return .03288301±;';
if(n == 7) return -. 0105974018;
else return 0.0;
}i N == S){
it(n == 0) return .1603023980;
if(n == 1) return .6038292698;
if(n == 2) return ,7243085284;
if(n == 3) return .13-.201459;
il(n 4) retirn -. 2422948871;
if(n == 5) return -. 0322448696;
if(n == 6) return .0775714938;
if(n 7) return -. 0062414902;
if(n 8) return -. 0125807520;
If(n == 9) rett:,L .0033357253;
elce :return 0.0;
}

if(N == 6) {
if(n 0) return .115407434;
if(n i) return .4946236904;
if(n= 2) return .7511339080;
i(n == 3) return .3152503517;
il(n== 4) rtturn -. 2262646940;
if(n == 5) return -. 1297668676;
if(n == 6) return .0975016056;
if(n :: 7) return .0275228655;
if(n 8) return -. 0315820393;
if(n == 9) return .0005538422;
if(n == j0) retun .0047772575;
it(n == 11) return -. 0010773011;
else return 0.0;}

if(N == 7) {
if(n 0) riturn .0778520541;
if(n 1) return .3965393195;
if(n 2) return 7291320908;
if(n == 3) return .4697822874;
if(n == 4) return -. 1439060039;
if(n == 5) return --. 2240361850;
J '(n fl=s r-t-rn 0713092193;
if(n 7) return .0806126092;
if(u= 8) return --. 0380299369;
i f(n -3) return -. 0W'"74541.6;
iI(n 10) return . '09986;
if(n == Ii) return ,. -'95780;
i•(n== 12) r6turn -. 0018016407;
if(n == 23) return .0003537138;
else return 0.0,
I

if(N == 8) {
if(n 0 ) return ,05441E5422;
if(n 1) rsturn .3128715909;
if(n 2) return .6756307363;
if(n 3) return .5863546837;
il(n 4) return -.0158291063;
if(n 5) return -. 2840155430;
if(n 6) return .0004724856;
if(n 7) return .1287474266;
if(n 8) return -. 0173693010;
if(n 9) zeturn -. 0440882539;
if(n 10) return .0139810279;
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if(n == 11) return .0087460940;
if(n == 12) return -. 0048703530;
i±(n 13) return -. 0003917404;
if(n == 14) return .0006764494;
if(n == 15) return -. 0001174768;
else return 0.0;}

iifN == 9) {
if(n 0) return .0380779474;
if(n 1) return .2438346746;
if(n 2) return .6048231237;
if(n 3) return .6572880781;
if(n 4) return .1331973858;
i(n= 5) reti.n -. 2932737833;
if(n 6) return -. 0968407832;
if(n == 7) return .1485407493;
i(nC 8) return .0307256815;
i(nC 9) return -. 0676328291;
i(n= 10) return .0002509471;
if(n 11) return .0223616621;
if(n 12) return -. 0047232048;
i(n= 13) return -. 0042815037;
i1(n 14) return .0010476469;
if(n == 15) return .00U2303858;
if(n 16) return -. 0001519032;
i(n= 17) return .0000393473;
else return 0.0;}

±if(N == 10) {
i.,(n =0) return .0266700579;
±i(n == i) return .i88itb8UUl;
i(n= 2) return .5272011889;
il(n == 3) return .6884590395;
i±(n 4) return .2811723437;
i±(n == 5) return -. 2498464243;
i(n= 6) return -. 1959462744;
±1nC 7) return .1273693403;
i±(n 8) return .0930573646;
if(n == 9) return -. 0713941472;
i±(n == 10) return -. 0294575368;
i1(n == 11) return .0332126741;
i±(n 12) return .0036065536;
if(n == 13) return -. 0107331756;
i±1n == 14) return .0013953517;
±1(n == 15) return .00'9924053;
i±(n == 16) return -. 0006858567;
if(n == 17) return -. 0001164669;
if(n == 18) return .0000935887;
if(n 19) return -. 0000132642;
else return 0.0;
I

else {
printf("\nError: Invalid choice of N");fflush(stdout);
return 0.0;
}

float G(N,n)
int N,n;

int i,sign=l-
for(i1;i<=abs(1-n);i*~+) sign *= -1;
return (sign*H(N,l-n));
I
float new(N,l,x)

C-!)



mnt N,l,x,

int ni
float temp =0.0;

if (l <= 0){
if (x ==0) return 1.0;
else return 0.0;

else{
for (n=0;nc=2*N-i;++n) temp += H(N~n) *new(N, 1-1, 2*x-n);
return Ci. 414212562*temp);

void majuC)

jut i,l,N,j;
float temp~temp..sum=0.0;,
FILE *outfile;-
char tilename[64);

printfC"\nlnput N corresponding to the desired Daubesiiies");
printf C" Wavelet:")
scanf ("%d", AN);
printf ("\nlnput depth of rccursion 1=';
scant ('8%d", Al);
printfC"\nWorking...");

sprint! (f ilenaae, "daub!/.d. phi". N);
CREATW-FILE(outfile, filename, "The Daub routine")
for~i=o; i<=(2*N-1); +i-i) fprintt(outfile, "'/.9f\n",nevCN,l,i));-
CLUSEJFILE(1, filename. "The Daub routine", out! ile);

sprintf(filename,"daub'/.d.h", N);
CREATE-FILE(outfile, filename, "The Daub routine")

CLOSEJFILE~i, filename, "The Daub routine", outfile);

spr-intf(Ifileniaiue,"daub'/.d.g", N);
CREATE-FILE(outfile, filename, "The Daub routine")

CLOSE.FILE~i. filename, "The Daub routine", out! ile);
print! C"\n');
sprint! (flilename, "daub!/.d. psi", N);
CREATEJ'ILE(outfile, filename, "The Daub routine")
prmnt-f("1ni intprun,. nf cn1r.nortr is /V VAX,," (- "tf~)/,1(2N~) ~~
forC(1=(-((2*N)-1))/2; j<=(i+(C2*N)-1))J/2; ++j){

temp-sum =0.0;
for(i=i; i>=2-(2*N); --i){
temp-sum 4G(N,x)*nev(N,l,((2*j)-i));

fprintf(outfile, "'/.9f\n",1.414212562*temp-sum);

CLOSEjFILECi, filename, "The Daub routine", outfile),
print! C"\n");

C.2.5 Lishu7'g of EfPS VI1. C

ROUTINE TO VIEW IMAGES FOR WAVELET ANALYZER

1* DATE: 15 April 91 4
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I* *I- '- r~h

/* VERSION: i.O ,0
/* NAME: epsview.c

I* */
/* DESCRIPTION: This routine performs the inner product between the phi *1
/* and phi coeficient of the image at any valid level as requested by *1
/* the caller. */
/* It is intended as a subroutine for the WAVELET ANALYZER PROGRAM. */I* *I
I* FILES READ: NONE. C/

/* FILES WRITTEN: A file will be generated each time the routine is */
/* routine is called. The name of the file will depend on the input *i
/* mage filename, the type of wavelet used, and the level of resolution. *1

/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h", */
/* <string.h> ./I* *
/* CALLING PROGRAMS: main-wave.c .//*' */
1* PROGRAMS CALLED: NONE *//4' *1
/* AUTHOR: Steve Smiley and J. Stewart Lain8  */

/* HISTORY: Initial Version *//4' ,/

/4 DECLARATION SECTION 4/
/#* *s * ** *** /*

#include <stdlib.h>
#include <stdios.h>
#include "smacros.h"Pinclude "jsmacros .hW
#include <string.h>
#include <math.h>

/* FUNCTION BODY *// ****'****e**************/

/*imageview(image)
int-array image;

int i, j;
FILE *fopen(, *infile, *outfile;
char infilename[64)], viewfile[64], psfile[64];
int.array image;

void main(argc, argv)
int argc;
char *argv[];{

if(argc != 4 && argo = O){
printf("Usage: hist <filename> <# of rows> <# of Cols>\n");
exit(O);

if(argc == 1)f
print!(" \rAn Input filename of image to be viewed:>"); fflush(stdout);
scanf ("%s", inf ilename);
print!("\n\n Input the size of the image (ROW COLUMN):>");
5canf("'d %d", &image.ROW, &image.COL);

}
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else{
sprint! Cintilcuiame, fqXe". argv Ci));
seca-ntCargv 212, "Uc", &image .ROW);
secant (argv [3] "%Ad", timage .COL);

CREATEj4ATRIXjROW(image .array, image. ROW, int);
CaEATE,..ATRIX-COL(image .array, image .ROW, image. COL, int);

OPENJFILE(infile, irrfilertame, "epsview. c")

loopij (image.ROW, image.COL){

Iscanf(inf ile, "'/3u\n", Aimage.array[ilrjLi);

spr-intf(psfile, "%e. eps". in! ilenaine);
CREATE-FILE(outfile, petite, "epeview.c")

fprin~tf(outfile."%%/!PS-Adobe-2.O EPSF-i.2\n");
fprintfCoutfile,"/.'/.X%Boundingsox: 0 0 %dI %d \n", image.ROW, image.COL);,
fprintt(outtile,"X%X././creator: Imageview by Laing & Smiley\nl);
fprintf(outfile."X%'./.`/Title: Xe. eps\n", in! ilename);
tprintt (out! it e,".'/.%%%EndComments\n");
tprintt (out! ito."gsave\n");
fprintf (out! ito,"/picstr Xd string def\n", image .ROW);
fprintf (out! ilo,"O 0 translate\n"l);
f!printt (out! ile, "7d %d scale\n' , img.ROW, image. COL);
fprintf~outfile."%/d %d 8 ['Ad 0 0 %dI 0 0>\n", image.ROW. image.COL,

image.ROW, image.COL);
tprintffoutfile,"t current! its picstr readhexetring pop}\n");
!print! (out! ito."image\n");

toopij (image. ROW, image. COL) {
if(image.array[i]J i <= is) tprint!(outfite, "0'/.x\n', image.array~iJLli));
iI(image .array~i) Ci) > i5) tprintf(outfile,''/2x\n", image .array Li)li]);

!printf(outfite,"shovpage");

/* call the shoupage from unix *

prinit!C"\nI have created a postscript file called: %e\r~n". petite);
tftush(stdaut);

/*sprintt(viewtiie. "ccli -c pageview /tmp-zrnt/kiorne/scgraph/en/ge/ssmitey/rhesis/C-code/Develop
/heximage.pe\n");
printt("Xs", viewtile); Ifflueh(stdout);
system(viewtile); *

Ci.2.6 Listing of MATRIX TOA SCll.C

KUOROS ASCII STRIPPER

1* DATE: 3 Sept 91

VERSION: 1.0

NAME: matrixtoascii.c

DESCRIPTION: This program strips the matrix coordinates tram an ASCII
-file outpucý by the Khoros image processing system.
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FILES READ: One fi.La specified by the user.

FILES WRITTEN: One tile with the suff ix .ascii added.
HEADERS USED: <stdio.h>, "jsmacros.h", <stctlib~h>, <striag.h>,
<math.h>, "macros .h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: NONE

AUTHOR: Steve Smiley

HISTORY: Initial Version

/* DECLARATION SECTION *
#icld * 4 s**** 4' *** **

#include <stdiib.h
#include <stdiros.h
#include "jmacros .h"

#iaciude <string.h
#include <math.h>

rnainQ

FILE *infile, *outfile;
char infilename [64), psiile[64J, element[24] , num[20);
ant a, j, ho.1.0, folo±W4
int..array image;

printf C" \n\n Input filename of image to be cleaned:>");
scanf("%s", infilename);
printiC"\n\n Input the size of the image CROW COLUMN):>");
scantC"Xd %Ad", &image.ROW, &image.COL);

CREATE..MATRIX-ROW~image.array, image.ROW, iut);
CREATE-MATRIX-.COL~image .ar~ray, image .ROW, image .COL, int);

OPEN-jILE~infile, intilename, "matrixtoascii.c')

whileC*element != '#') fsca-ni(infile, "%c", element);

loopij (image. ROW, image.CDL) {
iscant(infile, "%c", element);

whileC*elemnent != '=') fscanf~infile, "%c", element);
tscantf~iutile, '"Xd", &image.array[i) (ii);

sprintf(psfile, "%/s.ascii", infilename);
CREATEJFILE~outtile, pstile, "Imatrix. c")

loopij Cimage. ROW. image.-COL)
iprintf~outfile, "'/d\n", image.array Li] [i);

C.2.7 Listing of NiUTIL.C.'

#include <malloc .h>
#include <stdie.h>

void nrerror (error-text)
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char error..t ext £1;

void exito;
fprintf(stderr, "Numerical Recipes rin-time error.. An");
fprinLf (stderr. "%s\n" ,error~text);
fprintf(stderr,2'.. .now exiting to system...\)-
exit(i);
I

float *vector(nl,nh)
int nl,nh;

float *v;
vz(f loat *)mallocC((unsigned) (nh-nltl)E'bizeof(f loat));
if COv' nrerror("allocation failure in vectoro)");
return v-ni;
I
int *ivector(nl,nhi)
irtt nl,nh;

ant *v;

vr(int. *)malloc ((unsigned) Cnh-nl+1)*aizeof~int));
if (!v) nrerror("aJ location failure in ivectoro");
return v-nit;

double *dvectox (ni 1nh)
int nl,nh;
L

double *v;
v:(double *)malloc ((unsigned) (nh-nhl-1)*sizeof (double));
if (Iv) nrerror( 'alloc't ion ta4.lure in dvectorQ");
return v-ni;

fl~at **matrix(nri ,nrh,ncl~nch)
mrt nrl,nrh,ncl,rcic;

int i;
float **m;
M=(float **) malloc ((unsigned) (nrh-nrl+1)*sizeof( .float*));
if (Om) nrerror('-Ulocation failure 1 in niatrixo");
mi - nrl;,

for(i~nrl;i<=nrh,-i++){I
m[i]=Cfloat *) malloc ((unsigrned) (nch-ncl+l)*smzeof (float));
if (!m~i)) nrerror("aliocation failure 2 in matrixo");
mflij -= ncl;

return m;,

double **dmatrix(nrl,nrh,ncl,nchi)
int nrl,nrh,nicl,nch;

int i;
double **m;

m=(double **) malloc((unsigned) (nrh-nrl+1)*sizeof (double*));
if (In) nrerror("allocation failure 1 in dmatriro");
m - nrl;

for(iznrl;i<=nrlui++){
m[iJ=(d-)uble *) malloc ((unsigned) (nch-nci+1) *sizeof (double));
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if (!m~iJ) nrerror-("allocation failure 2 in dmatrixo");
u~i) -= al;

return m;

jut **imatrix(nrl,nrhancl,nch)
jut nrl,nrh,ncl,nch;

jut i,**m;

m=(iat **)walloc((unsigned) (nrh-url+1)*sizeof(int*));
if Om) nrerror("'allocatiou failure 1 in imatrixo");
a -= nri;

I or(iyurl ;i<=nrh; i++) {
nti)=(int *)inalloc(('unsig~ned) Cr.cli-ncl+1)*sizeof(int));
if (Imli]) urerror(I"allocation failure 2 in imatrizO");
m~l] -~ al;
I
return m;

float **submatrjx(a,oldrl,oldrh,oldcl,oldch,uewrl ,uewcl)
float **a;
jut oidrl ,oldrh~oldcl,oldch~newrl,newcl;

iut i,j;
float **m;

m=(float **) malloc((unsigned) (oldrh-oldrl+i)*si-zeof(±loat*));
if (!m) nrerror('allc'cation failure in submatrizo");
m - newrl;
for(i~oldrl,j~newrl.;i<=oldrh;i++,j++) a~lj~a[i)+oldcl-newcl;
return a;

void free.-vectcn Cv,1l,nh)
float *v;
jut nl,nh;-

free((char*) (vi-al));

void free ivector(v~nl.nh)
jut *v~nlliih;

free((char*) (v-ini))-
I
void free-dvector(v,nl.nh)
double *v;
jut nl,nh;

freo((char*) (v+nl));,

void freejuatrix(m,nrl,nrh,ncl,nch)
float **m;
jut nrl,nrh,ncl,nch;
{
ant i.;
for~iznrht;i>=nrl;i--) free((cbar*) (rnU.i).-ncl));
freo( (chart.) (atarir));-

void free-dArnatrix(rn,nyl ,nrh,ncl ,nch)
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double **m;
jilt url,nrh,ncl,uchi;

jut i;

for(i=nrh&;i>=nzl;i--) free((:•hars) (m~iJ4-ncl));
free((char*) (m+nrl));

void free-.iauatrix(m,nzi ,nrh,ncl ,iich)
jut **m;
jut nrl,nrh,ncl,nch;

jut i;

I or(iznrh;i>=nrl;i--) free(cohar*) (m[i]+ncl));
freeC(char*) (m~nrl));

void free-submatrjx(b,nrl,;:trh,ncl,nch)
float **b;
jut nrl,nrh,ncl,nch;

Iree((char*) (b+nri));

float **convert-mat~rix(.a,nrl ,nrh,ncl,nYch)
float *a;
jut u~rl,nrh,ncl~nch; <
float **m;

nrow~nrh-nrl+1;
rcol~nch-r. 141;
m = (float *',) malloc ((unsigned) (nrow)*sizeof(floe~t*));
if Orn) nrerror("allocation failure in convert-jsatrixfl");
mn -= nri;
for~irO~j=nr-l~i<=nrov-1;i++.j++) rn~j)=a+ucol*i-ncl;
retuflinm;

void free-convertjrkatriA(b,nrl,nrh,ncl ,nch)
float **b;
jut nri,nrh,nc;l~rch;

Ifree((char*) Cb+nrl));

C.2.8 Listing of TH'RESHOLD.CTHRESOLDI
/* DATE: 3 Sept 91

VERSION: 1.0
NAME: threshold.c

DESCRIPTION: This program thresholds an array of values. A windos is
chosen interactively by the user. All values inside the windowa are set
to 255 (white) and all values outside the threshold are set to 0 ('lack).

FILES READ: One file specified by the user.

FILES WRITTEN: aua file with the suffix thresh added.
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HEADERS USED: <stlio.h>, "jsmacros.h", <stdlib~h>, 1macros.h'

CALLING PROGF3MS: NONE
PROGRAMS CALLED: NONEI
AUTHOR: 3. Stewart Laing and Steve Smiley

HISTORY: Initial Version

/1' DECLARATICI SECTION *

#include <stdlib.h>
#include <stdi o i>
#include "macrosm.h
Wincludi "jsmacros .h"

/* FUNCTION BODY *

void main(argz, argv)4
int argc; ~
char *argv [];1

/* initialize variables *

int i,j;
r±KL E rinfije, vouttile;
iat-arra~y image;
int upthresh. downthresh;
char in! ilename[64), thresh! ile [64);1

/* test parameters *

if~asrgc != 4 &A argc != IXf
print! ("Usage: threshold <filename> <# of rows> <# of Cols>\n");
exit(O);

/* prompt for parameters if not input *

if(argc == I)(
printf("\n\n\n Input the size of the image (ROW COLUMN):>");
rscanf("%/d %d", timage .ROW, tkimage.COL);
print! (" \n\n Input I ilenase of image to be histogramed:>"); fflush(stdout);-
scanfC("Ws, inf ilename);

1* use parameters given on command line *

else{A
sprint! Cinfilename, "'%s", argv[1));
sscanf(arg~vC2), "'%d". &image.ROW);
sscani (argv [3), '7U", &image-CaL);

1* create a matrix to hold the fintge *
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CREATEMATRIX_3OW(image.array, image.ROW, int);
CREATENATRILCOL(image.array, image.ROW. image.COL, int); .-

/* open input tile */

OPEN-FILE (infile, intilename, "The thresholder")

1* prompt user for upper and lower threshold values *1

printf(" \n\u Input upper threshold:>");
scanf("%d", &upthresh);

printf(" \n\n Input lower threshold:>");
scanf ("Ud", kdowntkresh);

/* Create file to output the thresholded array for use.*/

sprintf(threshfile, "'/s.thresh", infilename);
CREATE&FILE(outfile, threshfile, "The Thresholder")

/* This part actually inputs the file, thresholds the */
/* grey scale values, and writes out either a 255 for */
/* white if it is betreen the up and down thresh values*/
/* and a 0 if it is outside this window.

loopij (image. ROW, image. CDL) {
rscantCInfile, "vd\n", &image. array LiJ LjJ);
if((image.array[i] [j] >= downthresh) A&

(image.atray[i] [j <= uptirenh)) image.array[i][j) = 255;
else iEage.array i) [j] = 0;
fprintf(outfile, "%d\n", image. array[i]) (j');

/v Tell the user where the output file is located. ,I

printf("\n Thresholded and binarized image cvsatud and saved in: %s\n\n", threshfile);

/* THE END */ ]

C.2.9 Listing of RD884.C

/* Program to read ADTS 8-mm tapes on a SUN.
* * * * * * Notice * * * * *

This material was prepared as an account of work sponsored by the
United States Government. Neither the United States, nor the
Department of Energy, nor the Department of Defense, nor any of
their employees, nor any of their contractors, :,ubcontractors. or
their employees, makes any warrenty. expressed or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its u:)e would not infringe
upon privately owned rights.

autho- : Th9mas D. Sullivan
Sandia National Laboratories
Mvision - 9133

ibuquerque, NH 87185-5800
May 10, 1991
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compile cc -o rdE84 rd8SI.c
,usage rd884 log~jile < adtsjfi.te > Iile..of-omplex-floats

log-file output file of formattedý heador2 and header2 from the
adts file. Default for log-.file is atderr.

adtu-file ;input file in 8-8-4 ATING I oi-;at.

file-of-complexfl~oats :oucput file ef calibrated complex
floating point pairs.

Transfering file from tape to disk.

dd if=/dev/nrstO oft-alts-file ibs=C156

Positioning tape to beginning of file 6.

mt -f /dev/nrstO asf 6

I*nclude <stdio .h
Winclude <string.h>
char *strstro;

main~argc, argv)
int argo;
char *argv[0;
f
FILE *fp;
jut ic~il,ip,irec=O,line po1, ýraint,o-.het,
char *hdr2.*phdr2,linejiheader[fr] ,ltne..trailer[3) ,c,e, iq
float *cbuf,caj _factor;
/* D&~claration of variables in Lsado-ý't
char country CS);
char labilS);
char date [9;
char datajiaine[9);
long arecords;

long header2-.len;

long reclen;I
long ebytes;

long neamps;
long n'ýines;
long da ta-value..Sype;
long aux..datastype;

long header2-.fmt;

if((p =f opn (rgv w" = NULL){
fprintf(stderr,'Cannot open output log file %s\n1,argv[lJ);

else
fp= stderr;

for(;;) { III
/* Positio'n to start of next header 1I*

fseok~stdin,irec*reclenO)
/* Read and echo headeri */

if ( fgets~country,5,stdin) INULL) break;
fgets'lab.S,stdin);
fgets~date,9.stdin);
fgets Cdata-aiame 9, stdin);
scanfC"Xd%d%dVAdYdVA~fld%d%d%d%d'A/.d" ,&nrecords.&header2_len,

&reclen,kpixerit,tibytes,&mbytes,&ebytes,&k sanps,&nlinos,



hdata-salue-type.Aaux..data..typehlieader2_I~t, &lines..per..rec);
fprintf(fp," DEADER-i CONTEITS\n\n");
fprintf(fp,*'%5sXSs :country/laboratory of origin\n"'cou~ntry~lab);
fprintf~fp."XI%1s date recorded (YY HE DD)\n'.date);
fprintf(Ip. "Il0s data name~n" data..name);
fprintf~fp,l"%l0d records in this Iile\n',nrecords);
fprintf(fp,"Xi0d bytes in header tvo\n".header2..len);
fprintf(fp,"%l0d bytes per record~n',reclen);
fprintf(fp,"Xl0d entries per image aample\n",pixent);
fprintf~fp,'6%l0d bytes per integer entry\n'.~ibytes);
fprintf~fpj'ZI%1d bytes per mantissa of an entry\ntmbytes);
fprintf(fp,"%l0d bytes per exponent of an entry\n",ebytes);
iprintf~fp."%l0d image samples per image line\n",nsamps);
fprintf(fp,"%i0d image lines per image\n",nlines);
fprintf(fp,"%i0d imagery data type\n".data-.value-sype);
fprintf~fp.'%l0d atxiliary data type\n".aux-.data-type);
fprintf(fp,'Xl0d format of header tuo\n"l,headertfmt);
fprinti(fp,"%i0d image line(s) per tape record~n',lines..per..rec);
fprintf~fp."\n"I);

if ( header2-.len !0){
/4' Position to start of header2. Read and echo *

fseek(stdin. (irec+1)*reclen,0);
/P Allocate space ::or header2 */

if((hdr-2 = (char *) malloc(headerz,.len)) ==NULL){
fprintl(stderr,"Out of memory for header 2.Vx");
exit(1);

I read(hdr2, sizeof (cha~r) ,header2..len, stdin);
I or(il = 0 ; ii < header2_len ;il+t){
c = hdr2(ilJ;
if(c '= \r') c= n)
fputc~c,fp);

fprintf(fp1",\n");

/4' scan header2 for calibration factor 4
it((phdr2 = strstr(hdr2,'SIGMAOT(LRCS )) NULL){

fprintf("Problems with header 2 cal-factor.\n'9;
exit(i);

phdr2 += 34;

/* Return allocated space for header 2. No longer nueded. *
free Chdr2);

14' Allocate space for floating-.point complex array. *
if((cbuf = (float *) mallocC2*sizeof(float)*nsanps)) NULL)(

fprintf(stderr,"Out of memory for complex array.\n");
exit(i);

off set = nrecorde - nlines ; /* start of data *
#ifdef PRT

fprintf~fpj'Offset = M%d~'off set);
lprintf(fp, "Calf ac = %f \n',cal-f actor);

#endif
cal~factor /= 4098.0;
} /* if (header2jlen *
for(il = 0 ; ii < nlines ; il+t)(
fseek(stdin. (il+offset~irec)*reclen.0);

/s Read and unpack line header 0f
fread(line-header~sizoof (char) ,9.stdin)
line =((int)(linejteadar(1J A 037) <cC 8) + Clinejieader[L2J & 0377)N;
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I

pol (line_hegdor[I] * 0140) >> 5;
frame = linejheader[2J & 0377;

$ifdef PRT
for(ic=O;ic<9;ic++) fprintf(Ip,"%2.2x ",linejheader[icJ);
fprintf(fp,,"\n");
fprintf(fp,"line %4d, pol %4d, frame %4d\n",line,pol~irame);

tendif
/* Read data and convert to complex */

for(ip = 0 ; ip < nsaups ; ip++) {
e=getc(stdin);
i=getc(stdin);
q=getc(stdin);
cbuf(2*ip] = (flomt)((long)i<<(ek017))*calfactor;
cbuf 2*ip+l) = (float)((long)q<<(e&017))*calfactor;}

fvri.te(cbuf,sizeof(float),2*nsampsstdout);

iztc += nrecords
} /* for(;;) */
exit(O);

-cha-r *strstr(strl,str2)
char *strl,*str2;

int i,strllen,str2len;

strllen=strlen(strl);
str2len=strlen(str2);

for(i=O ; i<strilen-str2len ; i++)
if (strncmp(strl+i,str2,str2len)==O)

return( strl+i );

returr.(NULL);

C.2.10 Listing of LOGB.C

/* Reads a raw floating point complex data file. Outputs a
log magvitude byte image.

* * * * * * Notice * * * * *

`5i atri Was pwepak-wd as an .. count of work sponsored by the
United States Government. Neither the United States, nor the
Department of Energy, noA the Department of Defense, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warrenty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe
upon privately owned rights.

author : Thomas D. Sullivan
Sanoia Nntioaal Laboratories
Division - 9133
Albuquerque, IN 87185-5800
May 3, 1991

Sets PMAX dBsm at 255 and 0 at PRXG dB bilow PMAX

compile: cc -o logb logb.c -'i.
usage: logb < inf-ile > out-file

#include <stdio.h>
#include <math.h>
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fdef an. GU 30

*de~f ine 3 0
main(argc,argv)
int argc;
char *argv [J;{
float scale.offst,tmpin[1024);
int actual,i;
unsigned char out[512J;

scale = 2550.0/PRIG
offst = scale *(PRNG-PMAX)/f10.0

while(actual = fread(in,sizeof(float), 1024,stdin)) {
tor(i=O; i<actual/2; i++) {
tap= in[2*iJ*in[2*i) + in[2*i+l]*in[2*i+l);
if(tap > 0,0) {
tap = scale * loglO(tmp) + offst;
if (tap > 255.0)

tap = 255.0;
else if (tap < 0.0)

tap = 0.0;
}

out[i] = tap;
I
fvrite(out,l ,actual/2,stdout);}
I

C.2.11 Listing of EXTRACT.C

/e****4'***e**a******-• • .***************************

/e***sese***e******* .********************s***s*******4******e*****f**s******/
..'AACT BLOCKS PROGRAM ee/

/* DATE: 12 sept 91
VERSION: 1.0

NAME: extract.c

DESCRIPTION: Thisprogram generates data vectors from multiresolution
decomposition coditicienz tiles for use in Dan Zahiiniax's Eadial
Basis Function neural network.

FILES READ: Detail signal files of various levels and a lower level
miultiresolution approximation file. A vector file containing locations
on the original image of desired feature extraction locations.
FILES WRITTLJ A file called block.# will bo generated.

HEADERS USU: <stdio.h>. "macros.h", "jesacros.h", "staumathb.h"

CALLIIG PROGRAMS: JONE
PROGRAMS CALLED: normalize.c

AUTHIOR: Steve Smiley

HISTORY: Initial Version

/* DECLARATION SECTION 4/

#include <stdcAo.h>
#include '%aaaos.h"
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*include "js.%acrvs~.h1'
#include "steumath.hi"
#include "nrutil AL"
void normalizeAQ;

/* HAIl PROGRAN swny *

"Main()

/* declare variables t-1

float~.vector cnrificient, temp;
float..ai ray temps ,hcider;
jut **zoordinates;
jut i, j. Ic, l~m, osanple..Aize~nsaaple-size, maxievel, R0W-position;
jut C0L..pos-.tiori~aRGW~aCOL~number-ot..cooidinates;
jut cROW, oCCL,nROW,nCOL, oiange..size,nimage..size;
iut level~image..size, class,sizerl ,dsize,countar;
float biggest;
char infilena'uef64]. irnfilename2[64];-
char done='n';
char I ilename[64) ,tempnameE64 ,wa~ve-.type[i0);
char imagcuiaae[34), output [64) ,coet~type[ES),outputf fle [64);
FILE *outfile, *jiufile, *infile2;

coordinates =imatrix(0, 200, 0, 2);

/* User Input Parameters *

printfC"\rx\n Input SAhe name of the file of the decomposed \nimage:"1);
sca~nf("%s",. infilenane.);

IoopiC64)
tempnaa~e~i) =u ji fenaine~i);

loopi (64)
if (infilename[i) = '.') tempnane~i5-' 1

sscaaf(tempname, "%s Y.4 %4 %s~ %~a", image-.name,
&oiwage..size, &level~coef..type, ware-tsype);

printf("\n\nL Input the number of sample Lows in the area of interest");
print12'k\n(The number must a power of 2):"1);
scant C"'d", &oLavas'1e -size);

/* Read in vectors of feature directions *

printf("Vilnput the name of the vector file;.");
acanf("'Is", infilename2);

OPEJLFILE(infile2, LaX ilename2, "The Center Progr~")
fscanf~infile2. 'I4". knumber-of-coordinats)
loopij (numberstf-coordinates, 2)

fscanf(infile2, "%d", &coordinates EiJ [j]);

CLOSEJFILE(i, filename, "The Ceitter Prograr", infile2)
printfC"Vi\n Input the class number (integer):");

scamnf("%d", Aclass);

primzf("\nlput the name of the output file: "1);

scanf("'4s"cutputfile);
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sprintf(output, "'/.s.'/.d".outputf ile, class);

CREATE-.FILE(outfiie, output, "The Center Program")

/* change sizes from original image to image sizes of level of interest *

maxievel = LOG2(oimage-size);
if (maxievel > 5) maxlevel = 5;
,loopi (level)
sizer *=2;

nsample-size =osample-size/sizer;
nimage-size oimage-size/sizer;

/* allocate memory

temps.ROW =nsample..yize;
temps.COL = nsample..size;
temps.array = matrix(1I, temps.ROW. 1, temps.COL);
looplij~temps.ROW,temps.COL) temps.array[i] [jJ 0.0;

holder.ROW = nimage-size;
holder.COL = nimage..size;
holder.array = matrix~i. holder.ROU, 1, holder.COL);
looplij (holdcr.ROW,hiolder.CDL) holder.a~rraytiJ] [= 0.0;

I* Read in sampled areas and store into arrays *

OPEI.YILE~infile, intilename, "The Center Program")

loopiij Cnimage..size, nimage..size)
fscanf(infile, "'If". tholder.arrayli) EjJ);

CLOSEJFILE(i, filename, "The Center Program", infilo)

normalizek(holder .array ,holder .ROW~holder. CCL);

/* begin data extraction *
Inopun(nuwI ,%r-ofn-ordina-t-.s){f

oRW=co:zrdinates Em)[0);
oCOL = coordinates~m(m)Ci;

uROW= cROW/sizer; if CoROW/.sizer ! 0) nUOW +=I;
nCOL =oCOL/sizer; if CoCOL%sizer !0) nCOL +1I;
printf C"7A*.d'/d7 %d Mn", nRCW~nCOL.nsample-size.nimage-size);
1* Cut put the vectors to a file */

loopij (nsample..size,nsami 1e~.size){
ROW-.position = aROW + i
COL-position = uCOL t j
loopkl(5,5){
allOW = k + ROW-position - 2;
aCOL =1 + COL-position - 2;
if (alOW > nimagt-size) allOW = nimage-.size;
if(aCOL > nimage..size) aCOL = nimage-size;
if(aROW < 1) allOW =1;
jifaCOL < 1) a.COL = 1;
fprintf~outfile, "%f, " holder.arraykftOw) EaCOL)*3);
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it(k 4 hA 1 == 4)
fprintt(outfile, "\nd\n", class);}

}
}

C.2.1- Listing (f NORMALIZEA.C

/**************************************e*'***********************************/*
/*a***e******'***************s****************s****************************~***/*/*** •NnRMALIZE AN ARRAY PROGRAM*/

/**************4*********************************.*********************s*******/

/* DATE: 15 Aug 91

VERSION: 1.0
NAME: normalizeA.c
DESCRIPTION: This program will normalize a set of data vectors used
in the RBF network.
FILES READ: Detail signal files of various levels and a lower level
multiresolution approximation file.
FILES WRITTEN: A file called vector.fl will be generated
HEADERS USED: <stdio.ht>, "macros.h", "jsmacros.h", "stegmath.h"
GALLIku FRUGIAMS: vector or sampler.c
PROGRAMS CALLED: NONE
AUTHOR: Steve Smiley & Steuart Laing
HISTORY: Initial Version

/* DECLARATION SECTION a/

tinclude <stdio.h>
#include "macros.h"
#include "jsmacros.h"
*include <math.1,A
AtuxmaliGVM~artay~jLp ,~UW,'.UOCL.J

float *varray-ptr;
int ROWCOL;{
/ *'*******•***v***•********/

/* declare variables */

float blugest ;
in• '.j;

/* Find the largest value in the vector */

biggest = 0.0;

looplij(ROU,COL)
if(Cabs((double)array-ptr[i][j]) > biggest) biggest

= tabs((double)array.ptr[i) [j));

/c Normalize vector /

looplij(ROW,COL)
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arrayptri i][j] array.ptr[i) [j)/biggest;

C-2.13 Listing of CENTER.C

*c**************** i***e*******s*s*****************s**************s*ee****e***/*
1*4***CENTER BLOCKS PROGRAM

/* DATE: 23 Aug 91

VEkSION: 1.0

NAME: center.c
DESCRIPTION: This program generates data vectors from multiresolution
decomposition coefficient files otr use in Dan Zahirniak's Radial
Basis Function neural network. The training data is extracted
from large blocks or areas of the image.
FILES READ: Detail signal files of various levels and a lower level
multiresolution approximation tile.
FILES WRITTEN: A file called block.# will be generated.

HEADERS USED: <stdio.h>, "macros.h", "jsmacros.h", "stewmath.h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: normalize.c
AUTHOR: Steve Smiley
HISTORY: Initial Version

/**********$$€$$****** 4***f/

/* DECLARATION SECTION */

Winclude <stdio.h>
#include "macros.h"
#include "jsmacros.h"
#include "stewmath.h"
#include "nrutil. i"

void norma!ize4()W

/* MAIN PROGRAM BODY */

mainC)

/* declare variables */

float-vector coefficient, temp;
float.array temps,holder;
int i, j, k, 1, osample-size,nsamnle.size, maxlevel, ROW.position;
int COL pozition,aROW,aCUL;
int oROW, oCOL,nROW,nCOL, oimage.size,nimagesize;
int level,image-size, class,sizecl ,dsize,counter;
float biggest;
char infilename[64j1;
char filename [64), tempname [641 ,wave-type [10];
char imagename [34), output [64) ,coeftype [5) ,outputfile [64);
FILE *outfile, Wintile;
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/* User Input Parameters *

printfC"\n\n Input the name of the tiile of the decomposed \nimage:"); 4

scanf ("%s", in! ilename);

loopi (64)
tempname Ci) = in! ilename Ci];

loopiCG4)
if (infilename~i) ='' tempuame~i)

sscanf~tempname, C'Ss %d %d 'As 'As", image-.namo, &oimage..size,
&level, coet-type, wave-type);

printf("\n\n Input the number of sample Rows in the area of interest");
print! C"\n(The number must a power of 2):");
scanf("'Ad", &osampl&.size);

print! C"\n\n Input the pixel coordinates of the top left hand\nj
corner of the regicn of interest in the original image (row col):");

scanf("'Ad 'Ad", &oROW, &oCOL);

printf("\n\n Input the class number (integer):");
scanf ("W'.," &class);

/* change sizes from original image to image sizes of level of interest *

maxievel =L0G2toimage-size);
it (marlevel > 5) marlevel =5;

loopi (level)
sizer *=2;
nROW = oROW/sizer; i!(oROW'Asizer !0) nUOW +=I;
nCOL = oCOL/sizer; if(oCOL'/sizer k0) nCOL +=I;
nsample-size =osample..size/sizer;
nimage-size =oimage-size/sizer;
printf ("%/d '/d 'Ad '/d\n", nROW,nCUL,nsample..size,nimage-size);

/* allocate! memory *
/odr.O = * * *.* ****** *

holder.ROW = nimage-size:

holder.array = matrix~i. holder.ROW, 1, holder.COL);
looplij~holder.ROW,holder.COL) holder-array[i) EJ)= 0.0;
temps.ROW = nsample-.size;
temps.COL = nsample-.size;
temps.array = matrix~a, temps.ROW, 1, temps.COL);
looplij~temps.ROW~tem,-s.COL) temps.array~i) Cj] = 0.0;

/* Read in sampled areas and store into arrays *

OPEt-FILE~infile, in! ilenamo, "The Sampler Program")
loop lij Cnimage..size, nimage-.size'>

fscanf(infile, "'AV" &holder-array[i) U]l);

CLOSEJFILE(i, filename, "The Wavelet Analyzer", in! ile)

normalizeA~holder .array~holder. ROW~holder .CUL);
printf ("\nnput the name of the oucr4-* file:";
scanf("%s",outputfile);
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5printt(ontput, "%s ..d" ,outputlile,class);
/*sprintf(odtput, "trainblock.%d" ,class); *
CREATE-FILE~outfile, output, "The Center Program")

loopij Cnsainple-si.ze xw-ample..size){
ROW-position = nR.IW + i
COL.position = nCOL + j
loopklC3,3){
alLOW = k + ROW..position - 1;
aCOL = 1 + COL-position - 1;
if (alOW > nimage...size) alLOW =nimage...size;
it(aCOL, > uimage-size) aCOL = nimage-size;
if (alOW < 1) allOW =1;
if(aCOL < 1) aCOL =1;
iprintf(outfile, "%f. ", holder. array EaROW) EaCOLJ*3);
it~h == 2 && 1 == 2)

fprintf~outfile, "\n%d\n", class);
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